The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Applying Word2vec on a dataset of texts

AC24AC24 Member Posts: 2 Learner I
Hi, I created ad SVM model for text classification and I want to share the process with you to have any advise to improve it. The purpose of this classificator is to classify a dataset of comments, reviews, or sentences in general, into positive and negative and the dataset I used for its training was made of 2400 tweets (1200 positive and 1200 negative). 

I also would ask you if there is a way to implement in this process a word2vec embedding, or how can I create an alternative process for this purpose. If I try to apply word2vec on the opetators loop and loop collection, this return some errors and I don't know how to give as input a dataset of sentences (my dataset has the attributs "text" and "sentiment") and not a whole text or a collaction of long texts. 

Here is the code of the process:

<?xml version="1.0" encoding="UTF-8"?><process version="9.10.011">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.10.011" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="9.10.011" expanded="true" height="68" name="Retrieve clean_dataset2" width="90" x="45" y="136">
        <parameter key="repository_entry" value="clean_dataset2"/>
      </operator>
      <operator activated="true" class="operator_toolbox:extract_sentiment" compatibility="2.14.000" expanded="true" height="103" name="Extract Sentiment" width="90" x="179" y="136">
        <parameter key="model" value="vader"/>
        <parameter key="text_attribute" value="text"/>
        <parameter key="show_advanced_output" value="true"/>
        <parameter key="use_default_tokenization_regex" value="true"/>
        <parameter key="tokenization_regex" value=".*"/>
        <list key="additional_words"/>
      </operator>
      <operator activated="true" class="nominal_to_text" compatibility="9.10.011" expanded="true" height="82" name="Nominal to Text" width="90" x="313" y="136">
        <parameter key="attribute_filter_type" value="single"/>
        <parameter key="attribute" value="text"/>
        <parameter key="attributes" value="text|sentiment"/>
        <parameter key="use_except_expression" value="false"/>
        <parameter key="value_type" value="nominal"/>
        <parameter key="use_value_type_exception" value="false"/>
        <parameter key="except_value_type" value="file_path"/>
        <parameter key="block_type" value="single_value"/>
        <parameter key="use_block_type_exception" value="false"/>
        <parameter key="except_block_type" value="single_value"/>
        <parameter key="invert_selection" value="false"/>
        <parameter key="include_special_attributes" value="false"/>
      </operator>
      <operator activated="true" class="text:process_document_from_data" compatibility="9.4.000" expanded="true" height="82" name="Process Documents from Data" width="90" x="447" y="136">
        <parameter key="create_word_vector" value="true"/>
        <parameter key="vector_creation" value="TF-IDF"/>
        <parameter key="add_meta_information" value="true"/>
        <parameter key="keep_text" value="true"/>
        <parameter key="prune_method" value="percentual"/>
        <parameter key="prune_below_percent" value="1.0"/>
        <parameter key="prune_above_percent" value="99.0"/>
        <parameter key="prune_below_rank" value="0.05"/>
        <parameter key="prune_above_rank" value="0.95"/>
        <parameter key="datamanagement" value="double_sparse_array"/>
        <parameter key="data_management" value="auto"/>
        <parameter key="select_attributes_and_weights" value="false"/>
        <list key="specify_weights"/>
        <process expanded="true">
          <operator activated="true" class="text:tokenize" compatibility="9.4.000" expanded="true" height="68" name="Tokenize" width="90" x="179" y="34">
            <parameter key="mode" value="non letters"/>
            <parameter key="characters" value=".:"/>
            <parameter key="language" value="English"/>
            <parameter key="max_token_length" value="3"/>
          </operator>
          <operator activated="true" class="text:transform_cases" compatibility="9.4.000" expanded="true" height="68" name="Transform Cases" width="90" x="313" y="34">
            <parameter key="transform_to" value="lower case"/>
          </operator>
          <operator activated="true" class="text:filter_stopwords_english" compatibility="9.4.000" expanded="true" height="68" name="Filter Stopwords (English)" width="90" x="447" y="34"/>
          <operator activated="true" class="text:filter_by_length" compatibility="9.4.000" expanded="true" height="68" name="Filter Tokens (by Length)" width="90" x="581" y="34">
            <parameter key="min_chars" value="4"/>
            <parameter key="max_chars" value="999"/>
          </operator>
          <connect from_port="document" to_op="Tokenize" to_port="document"/>
          <connect from_op="Tokenize" from_port="document" to_op="Transform Cases" to_port="document"/>
          <connect from_op="Transform Cases" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
          <connect from_op="Filter Stopwords (English)" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
          <connect from_op="Filter Tokens (by Length)" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="select_attributes" compatibility="9.10.011" expanded="true" height="82" name="Select Attributes" width="90" x="581" y="136">
        <parameter key="attribute_filter_type" value="no_missing_values"/>
        <parameter key="attribute" value=""/>
        <parameter key="attributes" value="|sentiment|text"/>
        <parameter key="use_except_expression" value="false"/>
        <parameter key="value_type" value="attribute_value"/>
        <parameter key="use_value_type_exception" value="false"/>
        <parameter key="except_value_type" value="time"/>
        <parameter key="block_type" value="attribute_block"/>
        <parameter key="use_block_type_exception" value="false"/>
        <parameter key="except_block_type" value="value_matrix_row_start"/>
        <parameter key="invert_selection" value="false"/>
        <parameter key="include_special_attributes" value="true"/>
      </operator>
      <operator activated="true" class="store" compatibility="9.10.011" expanded="true" height="68" name="Store wordlist" width="90" x="380" y="289">
        <parameter key="repository_entry" value="Wordlist"/>
      </operator>
      <operator activated="true" class="set_role" compatibility="9.10.011" expanded="true" height="82" name="Set Role" width="90" x="715" y="136">
        <parameter key="attribute_name" value="sentiment"/>
        <parameter key="target_role" value="label"/>
        <list key="set_additional_roles">
          <parameter key="Score" value="regular"/>
        </list>
      </operator>
      <operator activated="true" class="split_data" compatibility="9.10.011" expanded="true" height="103" name="Split Data" width="90" x="581" y="238">
        <enumeration key="partitions">
          <parameter key="ratio" value="0.7"/>
          <parameter key="ratio" value="0.3"/>
        </enumeration>
        <parameter key="sampling_type" value="stratified sampling"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <operator activated="true" class="concurrency:cross_validation" compatibility="9.10.011" expanded="true" height="145" name="Cross Validation" width="90" x="715" y="238">
        <parameter key="split_on_batch_attribute" value="false"/>
        <parameter key="leave_one_out" value="false"/>
        <parameter key="number_of_folds" value="10"/>
        <parameter key="sampling_type" value="automatic"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
        <parameter key="enable_parallel_execution" value="true"/>
        <process expanded="true">
          <operator activated="true" class="support_vector_machine_libsvm" compatibility="9.10.011" expanded="true" height="82" name="SVM (2)" width="90" x="179" y="136">
            <parameter key="svm_type" value="C-SVC"/>
            <parameter key="kernel_type" value="linear"/>
            <parameter key="degree" value="3"/>
            <parameter key="gamma" value="0.05"/>
            <parameter key="coef0" value="0.0"/>
            <parameter key="C" value="0.0"/>
            <parameter key="nu" value="0.5"/>
            <parameter key="cache_size" value="80"/>
            <parameter key="epsilon" value="1.0"/>
            <parameter key="p" value="0.1"/>
            <list key="class_weights"/>
            <parameter key="shrinking" value="true"/>
            <parameter key="calculate_confidences" value="true"/>
            <parameter key="confidence_for_multiclass" value="false"/>
          </operator>
          <connect from_port="training set" to_op="SVM (2)" to_port="training set"/>
          <connect from_op="SVM (2)" from_port="model" to_port="model"/>
          <portSpacing port="source_training set" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="9.10.011" expanded="true" height="82" name="Apply Model" width="90" x="112" y="85">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="performance" compatibility="9.10.011" expanded="true" height="82" name="Performance" width="90" x="179" y="187">
            <parameter key="use_example_weights" value="true"/>
          </operator>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_test set results" spacing="0"/>
          <portSpacing port="sink_performance 1" spacing="0"/>
          <portSpacing port="sink_performance 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="store" compatibility="9.10.011" expanded="true" height="68" name="Store model" width="90" x="849" y="238">
        <parameter key="repository_entry" value="My SVM model"/>
      </operator>
      <operator activated="true" class="apply_model" compatibility="9.10.011" expanded="true" height="82" name="Apply Model (2)" width="90" x="447" y="442">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <operator activated="true" class="performance" compatibility="9.10.011" expanded="true" height="82" name="Performance (2)" width="90" x="648" y="442">
        <parameter key="use_example_weights" value="true"/>
      </operator>
      <connect from_op="Retrieve clean_dataset2" from_port="output" to_op="Extract Sentiment" to_port="exa"/>
      <connect from_op="Extract Sentiment" from_port="exa" to_op="Nominal to Text" to_port="example set input"/>
      <connect from_op="Nominal to Text" from_port="example set output" to_op="Process Documents from Data" to_port="example set"/>
      <connect from_op="Process Documents from Data" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
      <connect from_op="Process Documents from Data" from_port="word list" to_op="Store wordlist" to_port="input"/>
      <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Split Data" to_port="example set"/>
      <connect from_op="Split Data" from_port="partition 1" to_op="Cross Validation" to_port="example set"/>
      <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model (2)" to_port="unlabelled data"/>
      <connect from_op="Cross Validation" from_port="model" to_op="Store model" to_port="input"/>
      <connect from_op="Store model" from_port="through" to_op="Apply Model (2)" to_port="model"/>
      <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
      <connect from_op="Apply Model (2)" from_port="model" to_port="result 2"/>
      <connect from_op="Performance (2)" from_port="performance" to_port="result 1"/>
      <connect from_op="Performance (2)" from_port="example set" to_port="result 3"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
      <portSpacing port="sink_result 4" spacing="0"/>
    </process>
  </operator>
</process>

I also share an image of the process.


Sign In or Register to comment.