The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

"time series prediction"

VikasVikas Member Posts: 12 Contributor II
edited May 2019 in Help
Hi everyone

I am new user of RapidMiner and this is my first post, I have 11 months electric feeder load time series data so I want to forecast  one day ahead feeder load with the help of this data.so can anyone guide me how can I do this with the help of RapidMiner ? :(
Data Format:-
      date      hour1 hour2  hour3  hour4  hour5  hour6  ......... hour24
10/01/2010  .2934 .1983  .1328  .2032  .1002 .1834    ......... .2903
10/02/2010  .2367 . 1298  .1289  .1901  .1192 .1920    ........  .1902
.................    ................................................................................
280 days            24 hour

Thanks

Vikas Gupta
Tagged:

Answers

  • wesselwessel Member Posts: 537 Maven
    First convert your data to:

    day_time,   load
    1,   .2934
    2,  .1983
    ....
    n   .1902


    Then use the windowing operator with the appropriate embedding dimension.
    Then use k-nn or linear regression as a learner.

    If you upload like 50 rows of data I'll make you an example process.
  • IngoRMIngoRM Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Community Manager, RMResearcher, Member, University Professor Posts: 1,751 RM Founder
    Dear Vikas,

    please post your questions only once in the most appropriate board and not in every board here. Thanks.

    Cheers,
    Ingo
  • wesselwessel Member Posts: 537 Maven
    Actually I have no idea how to convert this data to 1 column, using rapidminer, so I'm gonna use VIM or python.

    Like:
    loaddata #<-- this is a comment
    0.5144   #<-- first data point
    0.5144  
    0.5144  
    0.6001  
    0.6001  
    0.6859  
    0.6859  
    0.7716  
    0.7716  
    1.286  
    1.286  
    1.286  
    1.2003  
    1.2003  
    1.2003  
    1.286  
    1.286  
    1.5432  
    1.8004  
    1.6289  
    1.5432  
    1.3717  
    1.1145  
    0.8573
    0.9431 #<-- day 2
    ...
    1.286 #<-- last data point, etc

    edit:
    okay here is the data I will be using:
    load
    0.5144
    0.5144
    0.5144
    0.6001
    0.6001
    0.6859
    0.6859
    0.7716
    0.7716
    1.286
    1.286
    1.286
    1.2003
    1.2003
    1.2003
    1.286
    1.286
    1.5432
    1.8004
    1.6289
    1.5432
    1.3717
    1.1145
    0.8573
    0.9431
    0.6859
    0.6859
    0.6859
    0.7716
    0.7716
    0
    0
    0
    1.6289
    1.3717
    1.3717
    1.3717
    0
    1.5432
    1.4575
    1.4575
    1.6289
    1.8004
    1.7147
    1.5432
    1.3717
    1.1145
    0.8573
    0.7716
    0.6859
    0.6859
    0.7716
    0.9431
    1.0288
    2.0288
    1.2003
    1.286
    1.286
    1.4575
    1.3717
    1.3717
    0
    1.286
    1.4575
    1.5432
    1.5432
    1.8004
    1.8004
    1.5432
    1.3717
    1.2003
    0.9431
    0.8573
    0.7716
    0.7716
    0.8573
    0.8573
    0.9431
    1.0288
    1.2003
    1.286
    1.3717
    1.4575
    1.3717
    1.286
    1.2003
    1.286
    0
    0
    1.7147
    1.8861
    1.8861
    1.6289
    1.3717
    1.0288
    0.7716
    0.6859
    0.6001
    0.6001
    0.6859
    0.7716
    0.8573
    0
    0
    1.8861
    1.5432
    1.5432
    1.5432
    1.5432
    1.286
    1.3717
    1.3717
    1.5432
    1.8004
    1.8004
    1.7147
    1.5432
    1.3717
    1.1145
    0.9431
    0.8573
    0.7716
    0.6859
    0.6859
    0.7716
    0.9431
    1.0288
    1.2003
    1.2003
    1.3717
    1.4575
    1.6289
    1.5432
    0
    0
    0
    0
    1.3717
    1.3717
    1.3717
    1.2003
    1.0288
    0.8573
    0.6859
    0.6001
    0.5144
    0.5144
    0.6001
    0.6859
    0.6859
    0
    0.8573
    0.9431
    0.9431
    0.9431
    0.7716
    0.7716
    0
    0
    0
    0.8573
    1.0288
    1.1145
    1.1145
    1.0288
    0.9431
    0.7716
    0.6001
    0.6859
    0.6001
    0.6001
    0.6001
    0.6859
    0.6859
    0.7716
    0.8573
    1.0288
    1.0288
    1.5432
    1.0288
    0
    0
    1.286
    1.1145
    1.1145
    1.286
    1.3717
    1.286
    1.1145
    1.0288
    0.8573
    0.6001
    0.5144
    0.5144
    0.5144
    0.5144
    0.6001
    0.6859
    0
    0.9431
    1.1145
    1.0288
    1.1145
    1.0288
    0
    0
    1.286
    1.2003
    1.1145
    1.3717
    1.3717
    1.286
    1.1145
    0.9431
    0.8573
    0.6001
    0.5144
    0.5144
    0.5144
    0.5144
    0.6001
    0.6859
    0
    0
    1.3717
    1.1145
    1.1145
    1.0288
    0
    0
    1.2003
    1.1145
    1.1145
    1.2003
    1.286
    1.1145
    0.9431
    0.9431
    0.8573
    0.5144
    0.4287
    0.4287
    0.4287
    0.4287
    0.5144
    0.6001
    0.6859
    0.7716
    0.8573
    0.8573
    0.9431
    0.9431
    0.8573
    0
    0.9431
    0.9431
    0.9431
    1.2003
    1.286
    1.2003
    1.1145
    0.9431
    1.0288
    0.7716
    0.7716
    0.6859
    0.6859
    0.6859
    0.7716
    0.9431
    0
    1.286
    1.286
    1.286
    1.3717
    1.4575
    1.286
    1.2003
    1.286
    1.286
    1.5432
    1.7147
    1.8861
    1.7147
    1.6289
    1.3717
    1.2003
    0.8573
    0.7716
    0.6859
    0.6859
    0.6859
    0.7716
    0.8573
    0.9431
    1.1145
    1.286
    1.3717
    1.4575
    1.3717
    0
    1.6289
    1.3717
    1.286
    0.9431
    1.1145
    1.1145
    1.0288
    1.0288
    0.9431
    0.6001
    0.5144
    0.5144
    0.5144
    0.5144
    0.5144
    0.5144
    0.5144
    0.5144
    0.6859
    0.6859
    0.7716
    0.7716
    0.6859
    0.6859
    0.6001
    0.6001
    0.6001
    0.6001
    0.8573
    1.0288
    0.9431
    0.9431
    0.7716
    0.6001
    0.5144
    0.3429
    0.3429
    0.3429
    0.3429
    0.5144
    0.6859
    0.6859
    0.8573
    0.8573
    0.8573
    0.9431
    0.9431
    0.8573
    0.8573
    0.8573
    0.7716
    0.8573
    0.9431
    1.0288
    1.0288
    0.9431
    0.7716
    0.6859
    0.5144
    0.3429
    0.3429
    0.3429
    0.3429
    0.5144
    0.5144
    0.6859
    0.7716
    0.8573
    0.8573
    1.1145
    1.2003
    1.2003
    1.2003
    1.2003
    1.2003
    1.286
    1.5432
    1.6289
    1.5432
    1.286
    1.1145
    0.9431
    0.6859
    0.5144
    0.5144
    0.5144
    0.6859
    0.8573
    0.8573
    0.9431
    1.2003
    1.1145
    1.2003
    1.286
    1.3717
    0
    0
    1.3717
    1.3717
    1.4575
    1.7147
    1.8004
    1.7147
    1.3717
    1.2003
    0.9431
    0.7716
    0.6859
    0.6001
    0.6001
    0.6001
    0.6859
    0.7716
    1.0288
    1.1145
    1.2003
    1.286
    1.4575
    1.4575
    0
    0
    1.1145
    1.3717
    1.5432
    1.7147
    1.8861
    1.6289
    1.286
    1.1145
    0.9431
    0.7716
    0.6859
    0.5144
    0.5144
    0.5144
    0.6859
    0.8573
    0.9431
    1.0288
    1.1145
    1.2003
    1.3717
    1.3717
    1.286
    1.2003
    1.286
    1.286
    1.3717
    1.6289
    1.7147
    1.6289
    1.3717
    1.1145
    1.0288
    0.6859
    0.5144
    0.5144
    0.5144
    0.5144
    0.6859
    0.8573
    0.8573
    1.1145
    1.1145
    1.2003
    1.3717
    1.3717
    0
    1.0288
    1.3717
    1.2003
    1.286
    1.5432
    1.6289
    1.4575
    1.286
    1.1145
    1.0288
    0.7716
    0.6859
    0.6859
    0.6859
    0.6859
    0.6859
    0.7716
    0.8573
    0.9431
    1.1145
    1.0288
    1.1145
    1.0288
    0.9431
    0.7716
    0.8573
    0.8573
    0.8573
    1.1145
    1.286
    1.286
    1.1145
    1.0288
    0.8573
    0.7716
    0.6859
    0.6001
    0.6001
    0.6859
    0.7716
    0.8573
    1.0288
    1.0288
    1.0288
    1.1145
    1.0288
    1.0288
    0
    1.286
    1.2003
    1.2003
    1.2003
    1.5432
    1.5432
    1.4575
    1.286
    1.1145
    0.9431
    0.6859
    0.6859
    0.6001
    0.6001
    0.6859
    0.7716
    0.8573
    0.9431
    1.1145
    1.1145
    1.2003
    1.286
    1.286
    0
    1.2003
    1.2003
    1.2003
    1.3717
    1.6289
    1.6289
    1.5432
    1.286
    1.1145
    0.8573
    0.7716
    0.6001
    0.6001
    0.6001
    0.6859
    0.7716
    0.8573
    0.9431
    1.2003
    1.1145
    1.1145
    1.2003
    1.3717
    0
    1.286
    1.2003
    1.286
    1.3717
    1.6289
    1.8861
    1.8004
    1.4575
    1.2003
    0.8573
    0.6859
    0.6001
    0.6001
    0.6001
    0.6859
    0.8573
    0.8573
    0.9431
    1.1145
    1.1145
    1.1145
    0
    0
    0
    0
    0
    0
    1.7147
    1.8004
    1.8861
    1.5432
    1.3717
    1.1145
    0.7716
    0.6859
    0.6001
    0.6001
    0.6001
    0.6859
    0.6859
    0.7716
    1.0288
    1.1145
    1.1145
    1.2003
    1.2003
    1.2003
    1.2003
    1.0288
    1.0288
    1.1145
    1.3717
    1.5432
    1.6289
    1.5432
    1.5432
    1.286
    1.1145
    0.8573
    0.6001
    0.5144
    0.5144
    0.5144
    0.6859
    0.7716
    0.9431
    1.1145
    1.2003
    1.2003
    1.3717
    1.3717
    1.2003
    1.1145
    1.1145
    1.2003
    1.286
    1.5432
    1.6289
    1.4575
    1.286
    1.1145
    0.8573
    0.6859
    0.5144
    0.5144
    0.5144
    0.5144
    0.6859
    0.8573
    1.1145
    1.3717
    1.6289
    1.6289
    1.6289
    1.4575
    1.4575
    1.4575
    1.3717
    1.3717
    1.4575
    1.8861
    1.9719
    1.9719
    1.6289
    1.6289
    1.3717
    1.2003
    0.9431
    0.8573
    0.8573
    0.8573
    0.8573
    1.2003
    1.3717
    1.4575
    1.5432
    1.8861
    2.1434
    2.1434
    2.1434
    1.9719
    2.0576
    1.2003
    2.0576
    2.572
    2.572
    2.3148
    1.8861
    1.7147
    1.3717
    1.3717
    1.1145
    1.1145
    0
    0.8573
    0.9431
    1.2003
    1.286
    1.5432
    1.6289
    1.8004
    2.1434
    2.1434
    2.0576
    1.8861
    2.0576
    2.0576
    2.2291
    2.4006
    2.4863
    2.3148
    1.9719
    1.7147
    1.4575
    1.286
    0.9431
    0.9431
    0.8573
    0.8573
    0.9431
    1.1145
    1.3717
    1.4575
    1.6289
    1.8004
    2.1434
    2.1434
    2.1434
    1.9719
    1.9719
    2.1434
    2.1434
    2.4006
    2.4863
    2.3148
    2.0576
    1.7147
    1.5432
    1.1145
    1.0288
    0.9431
    0.9431
    0.8573
    1.0288
    1.2003
    1.3717
    1.5432
    1.6289
    1.8861
    2.1434
    2.0576
    2.0576
    0
    2.0576
    2.0576
    2.0576
    2.4006
    2.4006
    2.2291
    1.9719
    1.7147
    1.4575
    1.2003
    0.9431
    0.8573
    0.8573
    0.8573
    0.8573
    1.2003
    1.3717
    1.5432
    1.5432
    1.8004
    2.1434
    2.0576
    2.0576
    1.9719
    1.8861
    2.0576
    2.0576
    2.3148
    2.4006
    2.2291
    1.7147
    1.8004
    1.3717
    1.1145
    0.9431
    0.8573
    0.8573
    0.8573
    0.8573
    1.1145
    1.2003
    1.4575
    1.5432
    1.7147
    2.1434
    2.0576
    1.9719
    1.8004
    1.8861
    1.8861
    1.8861
    2.2291
    2.3148
    2.2291
    2.1434
    1.6289
    1.3717
    1.0288
    0.8573
    0.8573
    0.7716
    0.7716
    0.7716
    0.9431
    1.1145
    1.286
    1.3717
    1.5432
    1.6289
    1.5432
    1.3717
    1.286
    1.2003
    1.2003
    1.286
    1.6289
    1.8004
    1.8004
    1.6289
    1.3717
    1.2003
    1.0288
    0.8573
    0.8573
    0.8573
    1.0288
    1.2003
    1.286
    1.286
    1.3717
    1.5432
    1.7147
    1.8861
    1.9719
    1.8004
    1.8004
    1.7147
    1.8004
    1.8861
    2.0576
    2.2291
    2.0576
    1.7147
    1.5432
    1.2003
    1.0288
    0.8573
    0.8573
    0.8573
    0.8573
    1.0288
    1.2003
    1.286
    1.4575
    1.4575
    1.6289
    1.8004
    1.7147
    1.6289
    1.6289
    1.6289
    1.7147
    1.8004
    1.9719
    2.3148
    2.2291
    1.8861
    1.5432
    1.286
    0.9431
    0.8573
    0.7716
    0.7716
    0.7716
    0.8573
    1.1145
    1.286
    1.4575
    1.5432
    1.7147
    1.8004
    1.8861
    1.8004
    1.8004
    1.8861
    1.8861
    1.9719
    2.3148
    2.572
    2.3148
    1.8004
    1.6289
    1.3717
    1.0288
    0.8573
    0.8573
    0.8573
    0.8573
    1.0288
    1.2003
    1.2003
    1.4575
    1.6289
    1.7147
    1.8861
    1.8861
    1.8004
    1.8861
    1.8861
    1.8004
    0
    2.4006
    2.3148
    2.0576
    1.8004
    1.6289
    1.286
    1.0288
    0.9431
    0.8573
    0.6859
    0.6859
    0.8573
    1.2003
    1.286
    1.4575
    1.6289
    1.8004
    1.9719
    2.1434
    1.9719
    1.8861
    1.8861
    1.9719
    2.0576
    2.3148
    2.4863
    2.1434
    1.9719
    1.8004
    1.4575
    1.1145
    0.8573
    0.7716
    0.7716
    0.7716
    0.8573
    1.0288
    1.2003
    1.4575
    1.4575
    1.8004
    1.8861
    1.8861
    1.8004
    1.7147
    1.6289
    1.7147
    1.7147
    2.0576
    2.3148
    2.1434
    1.8861
    1.5432
    1.3717
    1.1145
    0.8573
    0.7716
    0.9431
    0.9431
    1.0288
    1.1145
    1.3717
    1.7147
    1.8004
    2.0576
    1.6289
    1.4575
    1.3717
    1.286
    1.2003
    0
    1.286
    1.8004
    1.8004
    1.8861
    1.6289
    1.4575
    1.4575
    1.1145
    0.8573
    0.7716
    0.7716
    0.7716
    0.7716
    1.0288
    1.286
    1.3717
    1.5432
    1.8861
    2.0576
    2.1434
    2.0576
    1.8861
    1.8861
    1.8861
    1.9719
    2.3148
    2.2291
    2.1434
    1.9719
    1.6289
    1.4575
    1.0288
    0.8573
    0.8573
    0.7716
    0.7716
    0.7716
    1.0288
    1.286
    1.5432
    1.7147
    1.8861
    2.0576
    2.0576
    1.8861
    0
    1.9719
    1.9719
    2.0576
    2.2291
    2.2291
    2.0576
    1.8861
    1.6289
    1.3717
    1.0288
    0.8573
    0.7716
    0.7716
    0.7716
    0.7716
    0.9431
    1.286
    1.3717
    1.4575
    1.7147
    1.8861
    1.8861
    1.8861
    1.7147
    1.7147
    1.7147
    1.8861
    2.1434
    2.3148
    2.0576
    1.8004
    1.5432
    1.286
    0.9431
    0.8573
    0.7716
    0.7716
    0.7716
    0.7716
    1.0288
    1.2003
    1.3717
    1.5432
    1.8004
    1.8004
    1.8861
    1.8004
    1.7147
    1.7147
    1.7147
    2.2291
    2.2291
    2.2291
    2.0576
    1.8004
    1.4575
    1.2003
    0.9431
    0.7716
    0.7716
    0.7716
    0.9431
    0.9431
    1.2003
    1.4575
    1.8004
    1.8004
    2.1434
    2.1434
    2.2291
    2.2291
    2.3148
    2.2291
    2.1434
    1.8004
    2.2291
    2.3148
    1.9719
    1.7147
    1.4575
    1.286
    1.0288
    0.7716
    0.7716
    0.6859
    0.6859
    0.7716
    0.9431
    1.2003
    1.3717
    1.6289
    1.8004
    2.4006
    2.4006
    2.3148
    2.2291
    2.2291
    2.4006
    2.4006
    2.7435
    2.7435
    2.6578
    2.3148
    1.9719
    1.6289
    1.2003
    1.0288
    1.0288
    0.9431
    1.0288
    1.1145
    1.2003
    1.3717
    1.5432
    1.8004
    1.8861
    1.8004
    1.7147
    1.5432
    1.6289
    1.5432
    1.4575
    1.5432
    1.9719
    2.3148
    2.2291
    1.9719
    1.8861
    1.6289
    1.2003
    1.0288
    0.9431
    0.9431
    0.9431
    1.1145
    1.3717
    1.5432
    1.8004
    1.8861
    2.1434
    2.3148
    2.2291
    2.2291
    0
    2.1434
    2.1434
    2.2291
    2.572
    2.7435
    2.572
    2.3148
    2.0576
    1.7147
    1.286
  • VikasVikas Member Posts: 12 Contributor II
    Thanks for help me Wessel

    Please help me about windowing operator(horizon,window size) to forecast the feeder load one day ahead.

    Thanks
    Vikas
  • wesselwessel Member Posts: 537 Maven
    Your problem does not seem to be really interesting.
    So your better of with classical statistics. No need for windowing, embedding, and machine learning here.

    http://devio.us/~wessel/load/load.jpeg
    http://devio.us/~wessel/load/load2.jpeg

    image
    image
  • VikasVikas Member Posts: 12 Contributor II
    Actually I am trying to build a model where I can predict the load in advance(1 or 2 day ahead) with the help of previous load data which can improve load shedding management of electric feeder.
  • wesselwessel Member Posts: 537 Maven
    Meh, if you insist creating a model using heavy number crunching machine learning....

    here is the process:
    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.0">
     <context>
       <input/>
       <output/>
       <macros/>
     </context>
     <operator activated="true" class="process" compatibility="5.0.9" expanded="true" name="Process">
       <parameter key="logfile" value="/home/wessel/loaddata.aml"/>
       <process expanded="true" height="507" width="705">
         <operator activated="true" class="read_csv" compatibility="5.0.9" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30">
           <parameter key="file_name" value="/home/wessel/Desktop/loaddata.csv"/>
           <parameter key="column_separators" value="   "/>
           <parameter key="date_format" value="MM/dd/yyyy"/>
           <list key="data_set_meta_data_information"/>
         </operator>
         <operator activated="false" class="series:moving_average" compatibility="5.0.2" expanded="true" height="76" name="MA_3_cen" width="90" x="180" y="30">
           <parameter key="attribute_name" value="load"/>
           <parameter key="window_width" value="3"/>
           <parameter key="result_position" value="center"/>
           <parameter key="keep_original_attribute" value="false"/>
         </operator>
         <operator activated="false" class="rename" compatibility="5.0.9" expanded="true" height="76" name="Rename" width="90" x="315" y="30">
           <parameter key="old_name" value="moving_average(load)"/>
           <parameter key="new_name" value="ma3_load"/>
         </operator>
         <operator activated="true" class="filter_examples" compatibility="5.0.9" expanded="true" height="76" name="Filter Examples" width="90" x="450" y="30">
           <parameter key="condition_class" value="no_missing_attributes"/>
         </operator>
         <operator activated="true" class="series:windowing" compatibility="5.0.2" expanded="true" height="76" name="Windowing" width="90" x="585" y="30">
           <parameter key="horizon" value="24"/>
           <parameter key="window_size" value="24"/>
           <parameter key="create_label" value="true"/>
           <parameter key="label_attribute" value="load"/>
         </operator>
         <operator activated="false" class="principal_component_analysis" compatibility="5.0.9" expanded="true" height="94" name="PCA" width="90" x="45" y="120">
           <parameter key="dimensionality_reduction" value="fixed number"/>
           <parameter key="number_of_components" value="4"/>
         </operator>
         <operator activated="true" class="optimize_selection" compatibility="5.0.9" expanded="true" height="94" name="Optimize Selection" width="90" x="180" y="120">
           <parameter key="generations_without_improval" value="2"/>
           <parameter key="keep_best" value="2"/>
           <process expanded="true" height="507" width="784">
             <operator activated="true" class="series:sliding_window_validation" compatibility="5.0.2" expanded="true" height="112" name="Validation" width="90" x="186" y="163">
               <parameter key="training_window_width" value="24"/>
               <parameter key="test_window_width" value="24"/>
               <parameter key="horizon" value="24"/>
               <parameter key="cumulative_training" value="true"/>
               <process expanded="true" height="507" width="165">
                 <operator activated="true" class="linear_regression" compatibility="5.0.9" expanded="true" height="94" name="Linear Regression" width="90" x="45" y="30">
                   <parameter key="feature_selection" value="none"/>
                 </operator>
                 <connect from_port="training" to_op="Linear Regression" to_port="training set"/>
                 <connect from_op="Linear Regression" from_port="model" to_port="model"/>
                 <portSpacing port="source_training" spacing="0"/>
                 <portSpacing port="sink_model" spacing="0"/>
                 <portSpacing port="sink_through 1" spacing="0"/>
               </process>
               <process expanded="true" height="507" width="300">
                 <operator activated="true" class="apply_model" compatibility="5.0.9" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
                   <list key="application_parameters"/>
                 </operator>
                 <operator activated="true" class="performance_regression" compatibility="5.0.9" expanded="true" height="76" name="Performance" width="90" x="45" y="120">
                   <parameter key="root_mean_squared_error" value="false"/>
                   <parameter key="correlation" value="true"/>
                 </operator>
                 <connect from_port="model" to_op="Apply Model" to_port="model"/>
                 <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
                 <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
                 <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
                 <portSpacing port="source_model" spacing="0"/>
                 <portSpacing port="source_test set" spacing="0"/>
                 <portSpacing port="source_through 1" spacing="0"/>
                 <portSpacing port="sink_averagable 1" spacing="0"/>
                 <portSpacing port="sink_averagable 2" spacing="0"/>
               </process>
             </operator>
             <connect from_port="example set" to_op="Validation" to_port="training"/>
             <connect from_op="Validation" from_port="averagable 1" to_port="performance"/>
             <portSpacing port="source_example set" spacing="0"/>
             <portSpacing port="source_through 1" spacing="0"/>
             <portSpacing port="sink_performance" spacing="0"/>
           </process>
         </operator>
         <operator activated="true" class="select_by_weights" compatibility="5.0.9" expanded="true" height="94" name="Select by Weights" width="90" x="315" y="120"/>
         <operator activated="true" class="series:sliding_window_validation" compatibility="5.0.2" expanded="true" height="112" name="Validation2" width="90" x="450" y="120">
           <parameter key="training_window_width" value="24"/>
           <parameter key="test_window_width" value="24"/>
           <parameter key="horizon" value="24"/>
           <parameter key="cumulative_training" value="true"/>
           <process expanded="true" height="507" width="300">
             <operator activated="true" class="linear_regression" compatibility="5.0.9" expanded="true" height="94" name="LinearR2" width="90" x="180" y="30">
               <parameter key="feature_selection" value="none"/>
             </operator>
             <connect from_port="training" to_op="LinearR2" to_port="training set"/>
             <connect from_op="LinearR2" from_port="model" to_port="model"/>
             <portSpacing port="source_training" spacing="0"/>
             <portSpacing port="sink_model" spacing="0"/>
             <portSpacing port="sink_through 1" spacing="0"/>
           </process>
           <process expanded="true" height="507" width="300">
             <operator activated="true" class="apply_model" compatibility="5.0.9" expanded="true" height="76" name="ApplyM2" width="90" x="45" y="30">
               <list key="application_parameters"/>
             </operator>
             <operator activated="true" class="write_aml" compatibility="5.0.9" expanded="true" height="60" name="Write AML" width="90" x="60" y="160">
               <parameter key="example_set_file" value="/home/wessel/loaddata.dat"/>
               <parameter key="attribute_description_file" value="/home/wessel/loaddata.aml"/>
             </operator>
             <operator activated="true" class="performance_regression" compatibility="5.0.9" expanded="true" height="76" name="Perf2" width="90" x="45" y="300">
               <parameter key="root_mean_squared_error" value="false"/>
               <parameter key="correlation" value="true"/>
             </operator>
             <connect from_port="model" to_op="ApplyM2" to_port="model"/>
             <connect from_port="test set" to_op="ApplyM2" to_port="unlabelled data"/>
             <connect from_op="ApplyM2" from_port="labelled data" to_op="Write AML" to_port="input"/>
             <connect from_op="Write AML" from_port="through" to_op="Perf2" to_port="labelled data"/>
             <connect from_op="Perf2" from_port="performance" to_port="averagable 1"/>
             <portSpacing port="source_model" spacing="0"/>
             <portSpacing port="source_test set" spacing="0"/>
             <portSpacing port="source_through 1" spacing="0"/>
             <portSpacing port="sink_averagable 1" spacing="0"/>
             <portSpacing port="sink_averagable 2" spacing="0"/>
           </process>
         </operator>
         <operator activated="true" class="read_aml" compatibility="5.0.9" expanded="true" height="60" name="Read AML" width="90" x="447" y="300">
           <parameter key="attributes" value="/home/wessel/loaddata.aml"/>
           <parameter key="column_separators" value=" "/>
         </operator>
         <connect from_op="Read CSV" from_port="output" to_op="Filter Examples" to_port="example set input"/>
         <connect from_op="Filter Examples" from_port="example set output" to_op="Windowing" to_port="example set input"/>
         <connect from_op="Windowing" from_port="example set output" to_op="Optimize Selection" to_port="example set in"/>
         <connect from_op="Optimize Selection" from_port="example set out" to_op="Select by Weights" to_port="example set input"/>
         <connect from_op="Optimize Selection" from_port="weights" to_op="Select by Weights" to_port="weights"/>
         <connect from_op="Select by Weights" from_port="example set output" to_op="Validation2" to_port="training"/>
         <connect from_op="Select by Weights" from_port="original" to_port="result 3"/>
         <connect from_op="Validation2" from_port="model" to_port="result 1"/>
         <connect from_op="Validation2" from_port="averagable 1" to_port="result 4"/>
         <connect from_op="Read AML" from_port="output" to_port="result 2"/>
         <portSpacing port="source_input 1" spacing="0"/>
         <portSpacing port="sink_result 1" spacing="144"/>
         <portSpacing port="sink_result 2" spacing="0"/>
         <portSpacing port="sink_result 3" spacing="0"/>
         <portSpacing port="sink_result 4" spacing="0"/>
         <portSpacing port="sink_result 5" spacing="0"/>
       </process>
     </operator>
    </process>
  • wesselwessel Member Posts: 537 Maven
    Result:
    correlation: 0.795 +/- 0.136 (mikro: 0.786)

    image
    image
  • VikasVikas Member Posts: 12 Contributor II
    If we see the data there are many outlier(0 and equal load) or human intervention so for better result  should I perform outlier analysis before the forecasting ?
  • wesselwessel Member Posts: 537 Maven
    I don't know, it depends on your application.

    A correlation of 0.8 is already really good.

    Depends also on how much noise your sensor has.
  • wesselwessel Member Posts: 537 Maven
    So, ehm, you got the "process" to run?
  • VikasVikas Member Posts: 12 Contributor II
    Dear  Wessel

    I got the process but please give me some help abut it's Output

    1:- Prediction trend accuracy and correlation both are same thing?
    2:-Can you give me some explanation about  its output of process?

    Thanks
    Vikas
  • wesselwessel Member Posts: 537 Maven
    No they are not the same, but they are related.

    Look at the scatter plot of predicted load vs actual load.
    When a data point is predicted correctly it lies exactly on the diagonal.
    You see that all data points that are not 0 are predicted with only a small error.

    The error is bigger in data points that are 0, which is expected because they are anomalous values.

    I could have used "mean absolute error" instead of "correlation".
    But the nice thing about "correlation" is that its invariant to the dataset.
    If I would multiply all data points by a factor 100, "mean absolute error" would go up by a factor 100.
    Correlation stays the same, since its normalized between -1 and 1.
  • VikasVikas Member Posts: 12 Contributor II
    Hi Wessel

    Can you help me about this linear regression generated by process
      0.299 * load-23 - 0.041 * load-19 + 0.006 * load-15 - 0.007 * load-8 - 0.014 * load-5 + 0.217 * load-1 + 0.407 * load-0 + 0.182
    for forecasting of one day ahead load.
  • wesselwessel Member Posts: 537 Maven
    What you want to know about this?
  • VikasVikas Member Posts: 12 Contributor II
    this is regression equation so how can I forecast(calculate) of load at 12,11,10,7 hour can you show me one example?
  • wesselwessel Member Posts: 537 Maven
    I'm not sure I understand what you are asking.
  • VikasVikas Member Posts: 12 Contributor II
    Can you suggest me any other alternative for prediction of (one day load) with the help of previous model ? :)
  • wesselwessel Member Posts: 537 Maven
  • VikasVikas Member Posts: 12 Contributor II
    Can I apply ARIMA using RapidMiner operators for forecasting the load?
  • wesselwessel Member Posts: 537 Maven
    No.
  • VikasVikas Member Posts: 12 Contributor II
    Hi Wessel

    Can you give me some idea about one hour ahead load prediction using same data set ? :(

    Thanks
  • wesselwessel Member Posts: 537 Maven
    I gave you a full implementation in Rapid Miner, and a link to alternative approach,...

    isn't that ideas enough?
Sign In or Register to comment.