The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

"Learners in Adaboost"

clememartinez20clememartinez20 Member Posts: 4 Contributor I
edited June 2019 in Help
Hi!

      I'm triying to classify some data using adaboost, but the only learner that this accept is Naive Bayes, i cant's use decision trees. How can i solve this or is this the only way i can use adaboost?

Tagged:

Answers

  • landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi,
    I don't experience any problems with that. Take a look at that process:
    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.0">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="5.0.8" expanded="true" name="Process">
        <process expanded="true" height="116" width="279">
          <operator activated="true" class="retrieve" compatibility="5.0.8" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
            <parameter key="repository_entry" value="//Samples/data/Iris"/>
          </operator>
          <operator activated="true" class="adaboost" compatibility="5.0.8" expanded="true" height="76" name="AdaBoost" width="90" x="179" y="30">
            <process expanded="true" height="471" width="759">
              <operator activated="true" class="decision_tree" compatibility="5.0.8" expanded="true" height="76" name="Decision Tree" width="90" x="45" y="30"/>
              <connect from_port="training set" to_op="Decision Tree" to_port="training set"/>
              <connect from_op="Decision Tree" from_port="model" to_port="model"/>
              <portSpacing port="source_training set" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
            </process>
          </operator>
          <connect from_op="Retrieve" from_port="output" to_op="AdaBoost" to_port="training set"/>
          <connect from_op="AdaBoost" from_port="model" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
    Greetings,
      Sebastian
Sign In or Register to comment.