The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"Probability Outputs of Logistic Regression (kernalized)"
Hello,
using Kernel Logistic Regression in RapidMiner 5.1 I could not figure out by now how to get probability predictions (the estimated probability that this customer will default is e.g. 0.11, not simply: this customer will default). When using "apply model" all I get is 0/1-predictions (RM internally uses threshold p_hat = 0.5?).
As I use the radial kernel I can not simply plug the estimated coefficients in p_hat = exp(Xb)/(1+exp(Xb)).
Can anyone tell my how to get probability predictions? I'd be really grateful!
Here is my process (As I usually work with R I'm not really used to RapidMiner by now):
using Kernel Logistic Regression in RapidMiner 5.1 I could not figure out by now how to get probability predictions (the estimated probability that this customer will default is e.g. 0.11, not simply: this customer will default). When using "apply model" all I get is 0/1-predictions (RM internally uses threshold p_hat = 0.5?).
As I use the radial kernel I can not simply plug the estimated coefficients in p_hat = exp(Xb)/(1+exp(Xb)).
Can anyone tell my how to get probability predictions? I'd be really grateful!
Here is my process (As I usually work with R I'm not really used to RapidMiner by now):
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.001" expanded="true" name="Process">
<process expanded="true" height="404" width="592">
<operator activated="true" class="retrieve" compatibility="5.1.001" expanded="true" height="60" name="Retrieve" width="90" x="45" y="75">
<parameter key="repository_entry" value="Data"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.1.001" expanded="true" height="76" name="Set Role" width="90" x="179" y="75">
<parameter key="name" value="default"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="optimize_parameters_grid" compatibility="5.1.001" expanded="true" height="94" name="Optimize Parameters (Grid)" width="90" x="313" y="75">
<list key="parameters">
<parameter key="Logistic Regression (2).kernel_gamma" value="[0.0001;2000;5;logarithmic]"/>
<parameter key="Logistic Regression (2).C" value="[0.00000001;10;5;logarithmic]"/>
</list>
<process expanded="true" height="381" width="592">
<operator activated="true" class="x_validation" compatibility="5.1.001" expanded="true" height="112" name="Validation (2)" width="90" x="179" y="30">
<parameter key="number_of_validations" value="3"/>
<parameter key="use_local_random_seed" value="true"/>
<parameter key="local_random_seed" value="1994"/>
<process expanded="true" height="399" width="280">
<operator activated="true" class="logistic_regression" compatibility="5.1.001" expanded="true" height="94" name="Logistic Regression (2)" width="90" x="95" y="30">
<parameter key="kernel_type" value="radial"/>
<parameter key="kernel_gamma" value="2000.0"/>
<parameter key="C" value="10.0"/>
</operator>
<connect from_port="training" to_op="Logistic Regression (2)" to_port="training set"/>
<connect from_op="Logistic Regression (2)" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="399" width="280">
<operator activated="true" class="apply_model" compatibility="5.1.001" expanded="true" height="76" name="Apply Model (2)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_binominal_classification" compatibility="5.1.001" expanded="true" height="76" name="Performance (2)" width="90" x="162" y="30">
<parameter key="main_criterion" value="AUC"/>
<parameter key="accuracy" value="false"/>
<parameter key="AUC" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="log" compatibility="5.1.001" expanded="true" height="76" name="Log" width="90" x="361" y="31">
<list key="log">
<parameter key="gamma" value="operator.Logistic Regression (2).parameter.kernel_gamma"/>
<parameter key="C" value="operator.Logistic Regression (2).parameter.C"/>
</list>
</operator>
<connect from_port="input 1" to_op="Validation (2)" to_port="training"/>
<connect from_op="Validation (2)" from_port="averagable 1" to_op="Log" to_port="through 1"/>
<connect from_op="Log" from_port="through 1" to_port="performance"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
</process>
</operator>
<operator activated="true" class="store" compatibility="5.1.001" expanded="true" height="60" name="Store" width="90" x="454" y="112">
<parameter key="repository_entry" value="valid.param"/>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Optimize Parameters (Grid)" to_port="input 1"/>
<connect from_op="Optimize Parameters (Grid)" from_port="performance" to_port="result 1"/>
<connect from_op="Optimize Parameters (Grid)" from_port="parameter" to_op="Store" to_port="input"/>
<connect from_op="Store" from_port="through" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
Tagged:
0
Answers
Here is my dummy process: which creates confidences aka a rough prob output. What does your process look like ?
In general it is recommended to post the used process whenever possible. Make it easy for us to help you
hope this was helpful,
steffen
Just one more question: "which creates confidences aka a rough prob output" -- do you simply mean by logistic regression estimated probabilities? I'm confused about the "rough".
Sorry for the confusion
greetings,
steffen