The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Forecasts of football scores

cdesoldacdesolda Member Posts: 1 Learner III
edited November 2018 in Help
Hi all,
i'm new in this forum.
I am studying different models to predicting results of football matches. In my opinion it would be very useful to use time series to improve the predictive accuracy of this problem.
I would like to use functionality windowing in rapidminer such as in the financial forecasts (http://www.neuralmarkettrends.com/2010/03/30/rapidminer-5-0-video-tutorial-9-financial-time- series-modeling-part-1 /).
There is a problem: the variable to predict is a nominal variable [1, X, 2].
I have converted this variable in numeric by using the "nominal to numeric". Obviously the result of predicted variable is a real number between [-1932, 3637]. How should I interpret these results? is the correct approach to the problem or I can not deal with nominal variables in the time series in rapidminer?
Thank you very much
Best regards

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.001">
 <context>
   <input/>
   <output/>
   <macros/>
 </context>
 <operator activated="true" class="process" compatibility="5.1.001" expanded="true" name="Process">
   <process expanded="true" height="580" width="1090">
     <operator activated="true" class="retrieve" compatibility="5.1.001" expanded="true" height="60" name="Retrieve" width="90" x="45" y="75">
       <parameter key="repository_entry" value="SoccerData"/>
     </operator>
     <operator activated="true" class="filter_examples" compatibility="5.1.001" expanded="true" height="76" name="Filter Examples" width="90" x="179" y="75">
       <parameter key="condition_class" value="attribute_value_filter"/>
       <parameter key="parameter_string" value="desc_squ = Udinese"/>
     </operator>
     <operator activated="true" class="nominal_to_numerical" compatibility="5.1.001" expanded="true" height="94" name="Nominal to Numerical (3)" width="90" x="380" y="75">
       <parameter key="attribute_filter_type" value="subset"/>
       <parameter key="attributes" value="segno|desc_squ_1|desc_squ"/>
     </operator>
     <operator activated="true" class="set_role" compatibility="5.1.001" expanded="true" height="76" name="Set Role" width="90" x="581" y="75">
       <parameter key="name" value="data"/>
       <parameter key="target_role" value="id"/>
       <list key="set_additional_roles"/>
     </operator>
     <operator activated="true" class="series:windowing" compatibility="5.0.002" expanded="true" height="76" name="Windowing" width="90" x="715" y="75">
       <parameter key="horizon" value="1"/>
       <parameter key="window_size" value="18"/>
       <parameter key="create_label" value="true"/>
       <parameter key="label_attribute" value="segno"/>
     </operator>
     <operator activated="true" class="series:sliding_window_validation" compatibility="5.0.002" expanded="true" height="112" name="Validation" width="90" x="849" y="30">
       <parameter key="training_window_width" value="18"/>
       <parameter key="training_window_step_size" value="1"/>
       <parameter key="test_window_width" value="18"/>
       <parameter key="cumulative_training" value="true"/>
       <process expanded="true" height="529" width="300">
         <operator activated="true" class="support_vector_machine" compatibility="5.1.001" expanded="true" height="112" name="SVM" width="90" x="137" y="157"/>
         <connect from_port="training" to_op="SVM" to_port="training set"/>
         <connect from_op="SVM" from_port="model" to_port="model"/>
         <portSpacing port="source_training" spacing="0"/>
         <portSpacing port="sink_model" spacing="0"/>
         <portSpacing port="sink_through 1" spacing="0"/>
       </process>
       <process expanded="true" height="529" width="435">
         <operator activated="true" class="apply_model" compatibility="5.1.001" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
           <list key="application_parameters"/>
         </operator>
         <operator activated="true" class="series:forecasting_performance" compatibility="5.0.002" expanded="true" height="76" name="Performance" width="90" x="315" y="30">
           <parameter key="horizon" value="1"/>
           <parameter key="use_example_weights" value="false"/>
         </operator>
         <connect from_port="model" to_op="Apply Model" to_port="model"/>
         <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
         <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
         <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
         <portSpacing port="source_model" spacing="0"/>
         <portSpacing port="source_test set" spacing="0"/>
         <portSpacing port="source_through 1" spacing="0"/>
         <portSpacing port="sink_averagable 1" spacing="0"/>
         <portSpacing port="sink_averagable 2" spacing="0"/>
       </process>
     </operator>
     <operator activated="true" class="retrieve" compatibility="5.1.001" expanded="true" height="60" name="Retrieve (2)" width="90" x="22" y="255">
       <parameter key="repository_entry" value="SoccerData"/>
     </operator>
     <operator activated="true" class="filter_examples" compatibility="5.1.001" expanded="true" height="76" name="Filter Examples (2)" width="90" x="179" y="255">
       <parameter key="condition_class" value="attribute_value_filter"/>
       <parameter key="parameter_string" value="desc_squ = Udinese"/>
     </operator>
     <operator activated="true" class="nominal_to_numerical" compatibility="5.1.001" expanded="true" height="94" name="Nominal to Numerical (2)" width="90" x="380" y="255">
       <parameter key="attribute_filter_type" value="subset"/>
       <parameter key="attributes" value="segno|desc_squ_1|desc_squ"/>
     </operator>
     <operator activated="true" class="set_role" compatibility="5.1.001" expanded="true" height="76" name="Set Role (2)" width="90" x="514" y="255">
       <parameter key="name" value="data"/>
       <parameter key="target_role" value="id"/>
       <list key="set_additional_roles"/>
     </operator>
     <operator activated="true" class="series:windowing" compatibility="5.0.002" expanded="true" height="76" name="Windowing (2)" width="90" x="648" y="255">
       <parameter key="window_size" value="18"/>
       <parameter key="label_attribute" value="segno"/>
     </operator>
     <operator activated="true" class="apply_model" compatibility="5.1.001" expanded="true" height="76" name="Apply Model (2)" width="90" x="849" y="300">
       <list key="application_parameters"/>
       <parameter key="create_view" value="true"/>
     </operator>
     <connect from_op="Retrieve" from_port="output" to_op="Filter Examples" to_port="example set input"/>
     <connect from_op="Filter Examples" from_port="example set output" to_op="Nominal to Numerical (3)" to_port="example set input"/>
     <connect from_op="Nominal to Numerical (3)" from_port="example set output" to_op="Set Role" to_port="example set input"/>
     <connect from_op="Set Role" from_port="example set output" to_op="Windowing" to_port="example set input"/>
     <connect from_op="Set Role" from_port="original" to_port="result 4"/>
     <connect from_op="Windowing" from_port="example set output" to_op="Validation" to_port="training"/>
     <connect from_op="Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
     <connect from_op="Validation" from_port="training" to_port="result 1"/>
     <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
     <connect from_op="Retrieve (2)" from_port="output" to_op="Filter Examples (2)" to_port="example set input"/>
     <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Nominal to Numerical (2)" to_port="example set input"/>
     <connect from_op="Nominal to Numerical (2)" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
     <connect from_op="Set Role (2)" from_port="example set output" to_op="Windowing (2)" to_port="example set input"/>
     <connect from_op="Windowing (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/>
     <connect from_op="Apply Model (2)" from_port="labelled data" to_port="result 3"/>
     <portSpacing port="source_input 1" spacing="0"/>
     <portSpacing port="sink_result 1" spacing="0"/>
     <portSpacing port="sink_result 2" spacing="0"/>
     <portSpacing port="sink_result 3" spacing="0"/>
     <portSpacing port="sink_result 4" spacing="0"/>
     <portSpacing port="sink_result 5" spacing="0"/>
   </process>
 </operator>
</process>

Answers

  • landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi,

    you should NOT convert your label to numerical if it's really nominal! That changes from a classification task to a regression task, making the same much more difficult. You can do windowing with nominal attributes...

    Greetings,
    Sebastian

    PS: Won't work. We already tried to forecast football results :)
Sign In or Register to comment.