The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Forecasts of football scores
Hi all,
i'm new in this forum.
I am studying different models to predicting results of football matches. In my opinion it would be very useful to use time series to improve the predictive accuracy of this problem.
I would like to use functionality windowing in rapidminer such as in the financial forecasts (http://www.neuralmarkettrends.com/2010/03/30/rapidminer-5-0-video-tutorial-9-financial-time- series-modeling-part-1 /).
There is a problem: the variable to predict is a nominal variable [1, X, 2].
I have converted this variable in numeric by using the "nominal to numeric". Obviously the result of predicted variable is a real number between [-1932, 3637]. How should I interpret these results? is the correct approach to the problem or I can not deal with nominal variables in the time series in rapidminer?
Thank you very much
Best regards
i'm new in this forum.
I am studying different models to predicting results of football matches. In my opinion it would be very useful to use time series to improve the predictive accuracy of this problem.
I would like to use functionality windowing in rapidminer such as in the financial forecasts (http://www.neuralmarkettrends.com/2010/03/30/rapidminer-5-0-video-tutorial-9-financial-time- series-modeling-part-1 /).
There is a problem: the variable to predict is a nominal variable [1, X, 2].
I have converted this variable in numeric by using the "nominal to numeric". Obviously the result of predicted variable is a real number between [-1932, 3637]. How should I interpret these results? is the correct approach to the problem or I can not deal with nominal variables in the time series in rapidminer?
Thank you very much
Best regards
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.001" expanded="true" name="Process">
<process expanded="true" height="580" width="1090">
<operator activated="true" class="retrieve" compatibility="5.1.001" expanded="true" height="60" name="Retrieve" width="90" x="45" y="75">
<parameter key="repository_entry" value="SoccerData"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="5.1.001" expanded="true" height="76" name="Filter Examples" width="90" x="179" y="75">
<parameter key="condition_class" value="attribute_value_filter"/>
<parameter key="parameter_string" value="desc_squ = Udinese"/>
</operator>
<operator activated="true" class="nominal_to_numerical" compatibility="5.1.001" expanded="true" height="94" name="Nominal to Numerical (3)" width="90" x="380" y="75">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attributes" value="segno|desc_squ_1|desc_squ"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.1.001" expanded="true" height="76" name="Set Role" width="90" x="581" y="75">
<parameter key="name" value="data"/>
<parameter key="target_role" value="id"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="series:windowing" compatibility="5.0.002" expanded="true" height="76" name="Windowing" width="90" x="715" y="75">
<parameter key="horizon" value="1"/>
<parameter key="window_size" value="18"/>
<parameter key="create_label" value="true"/>
<parameter key="label_attribute" value="segno"/>
</operator>
<operator activated="true" class="series:sliding_window_validation" compatibility="5.0.002" expanded="true" height="112" name="Validation" width="90" x="849" y="30">
<parameter key="training_window_width" value="18"/>
<parameter key="training_window_step_size" value="1"/>
<parameter key="test_window_width" value="18"/>
<parameter key="cumulative_training" value="true"/>
<process expanded="true" height="529" width="300">
<operator activated="true" class="support_vector_machine" compatibility="5.1.001" expanded="true" height="112" name="SVM" width="90" x="137" y="157"/>
<connect from_port="training" to_op="SVM" to_port="training set"/>
<connect from_op="SVM" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="529" width="435">
<operator activated="true" class="apply_model" compatibility="5.1.001" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="series:forecasting_performance" compatibility="5.0.002" expanded="true" height="76" name="Performance" width="90" x="315" y="30">
<parameter key="horizon" value="1"/>
<parameter key="use_example_weights" value="false"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="retrieve" compatibility="5.1.001" expanded="true" height="60" name="Retrieve (2)" width="90" x="22" y="255">
<parameter key="repository_entry" value="SoccerData"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="5.1.001" expanded="true" height="76" name="Filter Examples (2)" width="90" x="179" y="255">
<parameter key="condition_class" value="attribute_value_filter"/>
<parameter key="parameter_string" value="desc_squ = Udinese"/>
</operator>
<operator activated="true" class="nominal_to_numerical" compatibility="5.1.001" expanded="true" height="94" name="Nominal to Numerical (2)" width="90" x="380" y="255">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attributes" value="segno|desc_squ_1|desc_squ"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.1.001" expanded="true" height="76" name="Set Role (2)" width="90" x="514" y="255">
<parameter key="name" value="data"/>
<parameter key="target_role" value="id"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="series:windowing" compatibility="5.0.002" expanded="true" height="76" name="Windowing (2)" width="90" x="648" y="255">
<parameter key="window_size" value="18"/>
<parameter key="label_attribute" value="segno"/>
</operator>
<operator activated="true" class="apply_model" compatibility="5.1.001" expanded="true" height="76" name="Apply Model (2)" width="90" x="849" y="300">
<list key="application_parameters"/>
<parameter key="create_view" value="true"/>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Nominal to Numerical (3)" to_port="example set input"/>
<connect from_op="Nominal to Numerical (3)" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Windowing" to_port="example set input"/>
<connect from_op="Set Role" from_port="original" to_port="result 4"/>
<connect from_op="Windowing" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Validation" from_port="training" to_port="result 1"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
<connect from_op="Retrieve (2)" from_port="output" to_op="Filter Examples (2)" to_port="example set input"/>
<connect from_op="Filter Examples (2)" from_port="example set output" to_op="Nominal to Numerical (2)" to_port="example set input"/>
<connect from_op="Nominal to Numerical (2)" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
<connect from_op="Set Role (2)" from_port="example set output" to_op="Windowing (2)" to_port="example set input"/>
<connect from_op="Windowing (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<portSpacing port="sink_result 5" spacing="0"/>
</process>
</operator>
</process>
0
Answers
you should NOT convert your label to numerical if it's really nominal! That changes from a classification task to a regression task, making the same much more difficult. You can do windowing with nominal attributes...
Greetings,
Sebastian
PS: Won't work. We already tried to forecast football results