The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"Feature selection like roulette wheels strategy"
Hi all,
Assume I have an example set with m samples and n features.
I have weighted these n features with a statistical weighting method (like Gini, Chi-squared, InfoGain, etc.).
Now I have n normalized weighted features.
How can I probabilistically choose p features from these n features? (p << n) // p is very smaller than n
I want each feature have a probability to be chosen amongst these p features and this probability should be its normalized weight.
Can anybody help me?
Please help me find the operator tree to solve this problem.
Thanks in advance.
-- Misagh.
Assume I have an example set with m samples and n features.
I have weighted these n features with a statistical weighting method (like Gini, Chi-squared, InfoGain, etc.).
Now I have n normalized weighted features.
How can I probabilistically choose p features from these n features? (p << n) // p is very smaller than n
I want each feature have a probability to be chosen amongst these p features and this probability should be its normalized weight.
Can anybody help me?
Please help me find the operator tree to solve this problem.
Thanks in advance.
-- Misagh.
Tagged:
0
Answers
there is already an operator [tt]RandomSelection[/tt] which randomly selects attribute subsets. Unfortunately this operator is not yet capable of using attribute weights as probabilities for drawing the attributes. We can put this on our todo list. The completition of the implementation however might take a while - not because it is really complicated to implement but rather our momentary schedule dictates to focus on our clients instead of extending RapidMiner functionality...
Cheers,
Tobias