The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
WeightOptimization in RM4
Hi all,
I'm trying to interatively optimize my classifier with WeightOptimization from RapidMiner 4. (Many of my processes are still in RM4, so I'm still somehow tied to RM4).
Can anybody share a running example? Haven't found anything about this operator.
I always get the error "Parameter optimization not supported for non-number parameter type 'BinominalClassificationPerformance.false_positive'"
Any clue?
Alex
I'm trying to interatively optimize my classifier with WeightOptimization from RapidMiner 4. (Many of my processes are still in RM4, so I'm still somehow tied to RM4).
Can anybody share a running example? Haven't found anything about this operator.
I always get the error "Parameter optimization not supported for non-number parameter type 'BinominalClassificationPerformance.false_positive'"
Any clue?
Alex
<operator name="Classifier" class="Process" expanded="yes">
<operator name="NominalExampleSetGenerator" class="NominalExampleSetGenerator">
</operator>
<operator name="InfoGainRatioWeighting" class="InfoGainRatioWeighting">
</operator>
<operator name="WeightOptimization" class="WeightOptimization" expanded="yes">
<parameter key="parameter" value="BinominalClassificationPerformance.false_positive"/>
<operator name="XValidation" class="XValidation" expanded="yes">
<operator name="Weka-SMO" class="W-SMO">
<parameter key="D" value="true"/>
<parameter key="C" value="0.01"/>
<parameter key="N" value="1.0"/>
<parameter key="M" value="true"/>
<parameter key="K" value="weka.classifiers.functions.supportVector.PolyKernel -D -C 0 -E 1.0"/>
</operator>
<operator name="OperatorChain" class="OperatorChain" expanded="yes">
<operator name="Apply Model" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="BinominalClassificationPerformance" class="BinominalClassificationPerformance">
<parameter key="keep_example_set" value="true"/>
<parameter key="precision" value="true"/>
<parameter key="recall" value="true"/>
<parameter key="f_measure" value="true"/>
<parameter key="false_positive" value="true"/>
<parameter key="false_negative" value="true"/>
<parameter key="true_positive" value="true"/>
<parameter key="true_negative" value="true"/>
</operator>
</operator>
</operator>
</operator>
</operator>
0
Answers
what about converting the processes to RapidMiner 5? Most of them should still work or will work with small adjustments.
Unfortuantely we can't give you support for RM 4 anymore...
Greetings,
Sebastian