The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

WeightOptimization in RM4

schmittschmitt Member Posts: 5 Contributor II
edited November 2018 in Help
Hi all,

I'm trying to interatively optimize my classifier with WeightOptimization from RapidMiner 4. (Many of my processes are still in RM4, so I'm still somehow tied to RM4).
Can anybody share a running example? Haven't found anything about this operator.

I always get the error "Parameter optimization not supported for non-number parameter type 'BinominalClassificationPerformance.false_positive'"

Any clue?

Alex

<operator name="Classifier" class="Process" expanded="yes">
    <operator name="NominalExampleSetGenerator" class="NominalExampleSetGenerator">
    </operator>
    <operator name="InfoGainRatioWeighting" class="InfoGainRatioWeighting">
    </operator>
    <operator name="WeightOptimization" class="WeightOptimization" expanded="yes">
        <parameter key="parameter" value="BinominalClassificationPerformance.false_positive"/>
        <operator name="XValidation" class="XValidation" expanded="yes">
            <operator name="Weka-SMO" class="W-SMO">
                <parameter key="D" value="true"/>
                <parameter key="C" value="0.01"/>
                <parameter key="N" value="1.0"/>
                <parameter key="M" value="true"/>
                <parameter key="K" value="weka.classifiers.functions.supportVector.PolyKernel -D -C 0 -E 1.0"/>
            </operator>
            <operator name="OperatorChain" class="OperatorChain" expanded="yes">
                <operator name="Apply Model" class="ModelApplier">
                    <list key="application_parameters">
                    </list>
                </operator>
                <operator name="BinominalClassificationPerformance" class="BinominalClassificationPerformance">
                    <parameter key="keep_example_set" value="true"/>
                    <parameter key="precision" value="true"/>
                    <parameter key="recall" value="true"/>
                    <parameter key="f_measure" value="true"/>
                    <parameter key="false_positive" value="true"/>
                    <parameter key="false_negative" value="true"/>
                    <parameter key="true_positive" value="true"/>
                    <parameter key="true_negative" value="true"/>
                </operator>
            </operator>
        </operator>
    </operator>
</operator>

Answers

  • landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi,
    what about converting the processes to RapidMiner 5? Most of them should still work or will work with small adjustments.

    Unfortuantely we can't give you support for RM 4 anymore...

    Greetings,
    Sebastian
Sign In or Register to comment.