The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Problem with Write Model Operator

lenoleno Member Posts: 13 Contributor II
edited November 2018 in Help
Hi, i have a simple process
Read csv-> Optimize(a neural net)->write parameter
                                                  ->write performance
                                                  ->write model

I don't understand why but (and this is happen again) i have this message of error:
Oct 6, 2011 1:29:22 PM SEVERE: Process failed: No data was deliverd at port Write Model.input (connected).
Oct 6, 2011 1:29:22 PM SEVERE: Here:          Process[1] (Process)
          subprocess 'Main Process'
            +- Read CSV (2)[1] (Read CSV)
            +- Optimize Neural[1] (Optimize Parameters (Evolutionary))
          subprocess 'Optimization Process'
            |    +- Read CSV SVMX (2)[114] (Read CSV)
            |    +- Neural Net[114] (Neural Net)
            |    +- Apply Model SVMX (2)[114] (Apply Model)
            |    +- Performance (2)[114] (Performance (Classification))
      ==>  +- Write Model[1] (Write Model)
            +- Write Performance (2)[0] (Write Performance)
            +- Write Parameters (2)[0] (Write Parameters)


Everyone can help me?

Regards

Nello

Answers

  • MariusHelfMariusHelf RapidMiner Certified Expert, Member Posts: 1,869 Unicorn
    Hi,
    the write model operator needs a model at its input port, i.e. it has to be connected (directly or indirectly) to the output of the Neural Net operator. Please post your process setup if you need further help. Just go to the "xml" tab of the process and copy the contents here (using the insert code above).
  • lenoleno Member Posts: 13 Contributor II
    i have correctly connected the xml is:
    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.1.011">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="5.1.011" expanded="true" name="Process">
        <parameter key="parallelize_main_process" value="true"/>
        <process expanded="true" height="737" width="1217">
          <operator activated="true" class="read_csv" compatibility="5.1.011" expanded="true" height="60" name="Read CSV (2)" width="90" x="45" y="30">
            <parameter key="csv_file" value="/home/leno/EsperimentosugiuRegolandoNumero/Regolo18/trainingRegoloNumClass18.csv"/>
            <parameter key="column_separators" value=","/>
            <parameter key="first_row_as_names" value="false"/>
            <list key="annotations"/>
            <parameter key="locale" value="Italian (Italy)"/>
            <parameter key="encoding" value="MacRoman"/>
            <list key="data_set_meta_data_information">
              <parameter key="0" value="att1.true.real.attribute"/>
              <parameter key="1" value="att2.true.real.attribute"/>
              <parameter key="2" value="att3.true.real.attribute"/>
              <parameter key="3" value="att4.true.real.attribute"/>
              <parameter key="4" value="att5.true.real.attribute"/>
              <parameter key="5" value="att6.true.real.attribute"/>
              <parameter key="6" value="att7.true.real.attribute"/>
              <parameter key="7" value="att8.true.real.attribute"/>
              <parameter key="8" value="att9.true.real.attribute"/>
              <parameter key="9" value="att10.true.real.attribute"/>
              <parameter key="10" value="att11.true.nominal.label"/>
            </list>
          </operator>
          <operator activated="true" class="optimize_parameters_evolutionary" compatibility="5.1.011" expanded="true" height="112" name="Optimize Neural" width="90" x="246" y="30">
            <list key="parameters">
              <parameter key="Neural Net.learning_rate" value="[0.01;1.0]"/>
              <parameter key="Neural Net.momentum" value="[0.0;1.0]"/>
            </list>
            <parameter key="use_early_stopping" value="true"/>
            <parameter key="specify_population_size" value="false"/>
            <parameter key="tournament_fraction" value="0.75"/>
            <process expanded="true" height="377" width="681">
              <operator activated="true" class="read_csv" compatibility="5.1.011" expanded="true" height="60" name="Read CSV SVMX (2)" width="90" x="45" y="255">
                <parameter key="csv_file" value="/home/leno/EsperimentosugiuRegolandoNumero/Regolo18/testRegoloNumClass18.csv"/>
                <parameter key="column_separators" value=","/>
                <parameter key="first_row_as_names" value="false"/>
                <list key="annotations"/>
                <parameter key="encoding" value="MacRoman"/>
                <list key="data_set_meta_data_information">
                  <parameter key="0" value="att1.true.real.attribute"/>
                  <parameter key="1" value="att2.true.real.attribute"/>
                  <parameter key="2" value="att3.true.real.attribute"/>
                  <parameter key="3" value="att4.true.real.attribute"/>
                  <parameter key="4" value="att5.true.real.attribute"/>
                  <parameter key="5" value="att6.true.real.attribute"/>
                  <parameter key="6" value="att7.true.real.attribute"/>
                  <parameter key="7" value="att8.true.real.attribute"/>
                  <parameter key="8" value="att9.true.real.attribute"/>
                  <parameter key="9" value="att10.true.real.attribute"/>
                  <parameter key="10" value="att11.true.nominal.label"/>
                </list>
              </operator>
              <operator activated="true" class="neural_net" compatibility="5.1.011" expanded="true" height="76" name="Neural Net" width="90" x="112" y="30">
                <list key="hidden_layers"/>
                <parameter key="training_cycles" value="1000"/>
              </operator>
              <operator activated="true" class="apply_model" compatibility="5.1.011" expanded="true" height="76" name="Apply Model SVMX (2)" width="90" x="313" y="120">
                <list key="application_parameters"/>
              </operator>
              <operator activated="true" class="performance_classification" compatibility="5.1.011" expanded="true" height="76" name="Performance (2)" width="90" x="447" y="30">
                <parameter key="classification_error" value="true"/>
                <parameter key="weighted_mean_recall" value="true"/>
                <parameter key="weighted_mean_precision" value="true"/>
                <parameter key="root_mean_squared_error" value="true"/>
                <list key="class_weights"/>
              </operator>
              <connect from_port="input 1" to_op="Neural Net" to_port="training set"/>
              <connect from_op="Read CSV SVMX (2)" from_port="output" to_op="Apply Model SVMX (2)" to_port="unlabelled data"/>
              <connect from_op="Neural Net" from_port="model" to_op="Apply Model SVMX (2)" to_port="model"/>
              <connect from_op="Apply Model SVMX (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
              <connect from_op="Apply Model SVMX (2)" from_port="model" to_port="result 1"/>
              <connect from_op="Performance (2)" from_port="performance" to_port="performance"/>
              <portSpacing port="source_input 1" spacing="0"/>
              <portSpacing port="source_input 2" spacing="0"/>
              <portSpacing port="sink_performance" spacing="0"/>
              <portSpacing port="sink_result 1" spacing="0"/>
              <portSpacing port="sink_result 2" spacing="0"/>
            </process>
          </operator>
          <operator activated="true" class="write_model" compatibility="5.1.011" expanded="true" height="60" name="Write Model" width="90" x="514" y="210">
            <parameter key="model_file" value="/home/leno/EsperimentosugiuRegolandoNumero/Regolo18/RisultatiSoloNeural/ModelNeuralClassRegoloNum18"/>
            <parameter key="output_type" value="XML"/>
          </operator>
          <operator activated="true" class="write_performance" compatibility="5.1.011" expanded="true" height="60" name="Write Performance (2)" width="90" x="514" y="30">
            <parameter key="performance_file" value="/home/leno/EsperimentosugiuRegolandoNumero/Regolo18/RisultatiSoloNeural/PerformanceNeuralClassRegoloNum18"/>
          </operator>
          <operator activated="true" class="write_parameters" compatibility="5.1.011" expanded="true" height="60" name="Write Parameters (2)" width="90" x="514" y="120">
            <parameter key="parameter_file" value="/home/leno/EsperimentosugiuRegolandoNumero/Regolo18/RisultatiSoloNeural/ParametriNeuralClassRegoloNum18"/>
          </operator>
          <connect from_op="Read CSV (2)" from_port="output" to_op="Optimize Neural" to_port="input 1"/>
          <connect from_op="Optimize Neural" from_port="performance" to_op="Write Performance (2)" to_port="input"/>
          <connect from_op="Optimize Neural" from_port="parameter" to_op="Write Parameters (2)" to_port="input"/>
          <connect from_op="Optimize Neural" from_port="result 1" to_op="Write Model" to_port="input"/>
          <connect from_op="Write Model" from_port="through" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
  • MariusHelfMariusHelf RapidMiner Certified Expert, Member Posts: 1,869 Unicorn
    Hm, looks fine so far. Could you try to disable the option "parallelize main process"?
Sign In or Register to comment.