The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
outofmemory problem
i am a newbie(student) with this software, i had saw some tutorials and i reached some info about this software
i have a project about text mining, i was given 2 classes of texts sets and another texts set that is needed to be classified to one of the classes
i have done this:
the problem is the data is huge, so i get this error:
sorry for the long post:
Stack trace:
------------
Exception: java.lang.RuntimeException
Message: Cannot clone com.rapidminer.example.set.SplittedExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded.. Cause: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded..
Stack trace:
com.rapidminer.example.set.AbstractExampleSet.clone(AbstractExampleSet.java:375)
com.rapidminer.operator.learner.tree.TreeBuilder.learnTree(TreeBuilder.java:90)
com.rapidminer.operator.learner.tree.AbstractTreeLearner.learn(AbstractTreeLearner.java:119)
com.rapidminer.operator.learner.AbstractLearner.doWork(AbstractLearner.java:152)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
com.rapidminer.operator.validation.ValidationChain.executeLearner(ValidationChain.java:214)
com.rapidminer.operator.validation.ValidationChain.learn(ValidationChain.java:305)
com.rapidminer.operator.validation.XValidation.performIteration(XValidation.java:159)
com.rapidminer.operator.validation.XValidation.estimatePerformance(XValidation.java:151)
com.rapidminer.operator.validation.ValidationChain.doWork(ValidationChain.java:273)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
com.rapidminer.operator.OperatorChain.doWork(OperatorChain.java:379)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.Process.run(Process.java:925)
com.rapidminer.Process.run(Process.java:848)
com.rapidminer.Process.run(Process.java:807)
com.rapidminer.Process.run(Process.java:802)
com.rapidminer.Process.run(Process.java:792)
com.rapidminer.gui.ProcessThread.run(ProcessThread.java:63)
Process:
------------
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.002">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.002" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="UTF-8"/>
<parameter key="parallelize_main_process" value="false"/>
<process expanded="true" height="588" width="968">
<operator activated="true" class="text:process_document_from_file" compatibility="5.2.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="84" y="179">
<list key="text_directories">
<parameter key="auth" value="C:\david computer backup\david university\year 3\machine learning\texts\auth"/>
<parameter key="other" value="C:\david computer backup\david university\year 3\machine learning\texts\other"/>
</list>
<parameter key="file_pattern" value="*"/>
<parameter key="extract_text_only" value="true"/>
<parameter key="use_file_extension_as_type" value="true"/>
<parameter key="content_type" value="txt"/>
<parameter key="encoding" value="UTF-8"/>
<parameter key="create_word_vector" value="true"/>
<parameter key="vector_creation" value="TF-IDF"/>
<parameter key="add_meta_information" value="true"/>
<parameter key="keep_text" value="false"/>
<parameter key="prune_method" value="none"/>
<parameter key="prunde_below_percent" value="3.0"/>
<parameter key="prune_above_percent" value="30.0"/>
<parameter key="prune_below_rank" value="0.05"/>
<parameter key="prune_above_rank" value="0.05"/>
<parameter key="datamanagement" value="double_sparse_array"/>
<parameter key="parallelize_vector_creation" value="false"/>
<process expanded="true" height="588" width="968">
<operator activated="true" class="text:tokenize" compatibility="5.2.001" expanded="true" height="60" name="Tokenize" width="90" x="74" y="145">
<parameter key="mode" value="non letters"/>
<parameter key="characters" value=".:"/>
<parameter key="language" value="English"/>
<parameter key="max_token_length" value="3"/>
</operator>
<connect from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="select_attributes" compatibility="5.2.002" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="30">
<parameter key="attribute_filter_type" value="no_missing_values"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.2.002" expanded="true" height="76" name="Set Role" width="90" x="313" y="30">
<parameter key="name" value="label"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.002" expanded="true" height="112" name="Validation" width="90" x="447" y="30">
<parameter key="create_complete_model" value="false"/>
<parameter key="average_performances_only" value="true"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_validations" value="10"/>
<parameter key="sampling_type" value="stratified sampling"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="parallelize_training" value="false"/>
<parameter key="parallelize_testing" value="false"/>
<process expanded="true" height="588" width="459">
<operator activated="true" class="decision_tree" compatibility="5.2.002" expanded="true" height="76" name="Decision Tree" width="90" x="180" y="138">
<parameter key="criterion" value="gain_ratio"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_gain" value="0.1"/>
<parameter key="maximal_depth" value="20"/>
<parameter key="confidence" value="0.25"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
<parameter key="no_pre_pruning" value="false"/>
<parameter key="no_pruning" value="false"/>
</operator>
<connect from_port="training" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="588" width="459">
<operator activated="true" class="apply_model" compatibility="5.2.002" expanded="true" height="76" name="Apply Model" width="90" x="76" y="147">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance" compatibility="5.2.002" expanded="true" height="76" name="Performance" width="90" x="180" y="255">
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Process Documents from Files" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Process Documents from Files" from_port="word list" to_port="result 2"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="training" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
i have a project about text mining, i was given 2 classes of texts sets and another texts set that is needed to be classified to one of the classes
i have done this:
just like in this tuttorial: http://vancouverdata.blogspot.com/2010/11/text-analytics-with-rapidminer-part-5.html
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.002">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.002" expanded="true" name="Process">
<process expanded="true" height="588" width="968">
<operator activated="true" class="text:process_document_from_file" compatibility="5.2.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="84" y="179">
<list key="text_directories">
<parameter key="auth" value="C:\david computer backup\david university\year 3\machine learning\texts\auth"/>
<parameter key="other" value="C:\david computer backup\david university\year 3\machine learning\texts\other"/>
</list>
<process expanded="true">
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
</process>
</operator>
<operator activated="true" class="select_attributes" compatibility="5.2.002" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="120">
<parameter key="attribute_filter_type" value="no_missing_values"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.2.002" expanded="true" height="76" name="Set Role" width="90" x="282" y="117">
<parameter key="name" value="label"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.002" expanded="true" height="112" name="Validation" width="90" x="447" y="120">
<process expanded="true" height="588" width="459">
<operator activated="true" class="decision_tree" compatibility="5.2.002" expanded="true" height="76" name="Decision Tree" width="90" x="180" y="138"/>
<connect from_port="training" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="588" width="459">
<operator activated="true" class="apply_model" compatibility="5.2.002" expanded="true" height="76" name="Apply Model" width="90" x="76" y="147">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="5.2.002" expanded="true" height="76" name="Performance" width="90" x="180" y="255"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Process Documents from Files" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Process Documents from Files" from_port="word list" to_port="result 2"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="training" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
the problem is the data is huge, so i get this error:
sorry for the long post:
Stack trace:
------------
Exception: java.lang.RuntimeException
Message: Cannot clone com.rapidminer.example.set.SplittedExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded.. Cause: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded..
Stack trace:
com.rapidminer.example.set.AbstractExampleSet.clone(AbstractExampleSet.java:375)
com.rapidminer.operator.learner.tree.TreeBuilder.learnTree(TreeBuilder.java:90)
com.rapidminer.operator.learner.tree.AbstractTreeLearner.learn(AbstractTreeLearner.java:119)
com.rapidminer.operator.learner.AbstractLearner.doWork(AbstractLearner.java:152)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
com.rapidminer.operator.validation.ValidationChain.executeLearner(ValidationChain.java:214)
com.rapidminer.operator.validation.ValidationChain.learn(ValidationChain.java:305)
com.rapidminer.operator.validation.XValidation.performIteration(XValidation.java:159)
com.rapidminer.operator.validation.XValidation.estimatePerformance(XValidation.java:151)
com.rapidminer.operator.validation.ValidationChain.doWork(ValidationChain.java:273)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
com.rapidminer.operator.OperatorChain.doWork(OperatorChain.java:379)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.Process.run(Process.java:925)
com.rapidminer.Process.run(Process.java:848)
com.rapidminer.Process.run(Process.java:807)
com.rapidminer.Process.run(Process.java:802)
com.rapidminer.Process.run(Process.java:792)
com.rapidminer.gui.ProcessThread.run(ProcessThread.java:63)
Process:
------------
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.002">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.002" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="UTF-8"/>
<parameter key="parallelize_main_process" value="false"/>
<process expanded="true" height="588" width="968">
<operator activated="true" class="text:process_document_from_file" compatibility="5.2.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="84" y="179">
<list key="text_directories">
<parameter key="auth" value="C:\david computer backup\david university\year 3\machine learning\texts\auth"/>
<parameter key="other" value="C:\david computer backup\david university\year 3\machine learning\texts\other"/>
</list>
<parameter key="file_pattern" value="*"/>
<parameter key="extract_text_only" value="true"/>
<parameter key="use_file_extension_as_type" value="true"/>
<parameter key="content_type" value="txt"/>
<parameter key="encoding" value="UTF-8"/>
<parameter key="create_word_vector" value="true"/>
<parameter key="vector_creation" value="TF-IDF"/>
<parameter key="add_meta_information" value="true"/>
<parameter key="keep_text" value="false"/>
<parameter key="prune_method" value="none"/>
<parameter key="prunde_below_percent" value="3.0"/>
<parameter key="prune_above_percent" value="30.0"/>
<parameter key="prune_below_rank" value="0.05"/>
<parameter key="prune_above_rank" value="0.05"/>
<parameter key="datamanagement" value="double_sparse_array"/>
<parameter key="parallelize_vector_creation" value="false"/>
<process expanded="true" height="588" width="968">
<operator activated="true" class="text:tokenize" compatibility="5.2.001" expanded="true" height="60" name="Tokenize" width="90" x="74" y="145">
<parameter key="mode" value="non letters"/>
<parameter key="characters" value=".:"/>
<parameter key="language" value="English"/>
<parameter key="max_token_length" value="3"/>
</operator>
<connect from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="select_attributes" compatibility="5.2.002" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="30">
<parameter key="attribute_filter_type" value="no_missing_values"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.2.002" expanded="true" height="76" name="Set Role" width="90" x="313" y="30">
<parameter key="name" value="label"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.002" expanded="true" height="112" name="Validation" width="90" x="447" y="30">
<parameter key="create_complete_model" value="false"/>
<parameter key="average_performances_only" value="true"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_validations" value="10"/>
<parameter key="sampling_type" value="stratified sampling"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="parallelize_training" value="false"/>
<parameter key="parallelize_testing" value="false"/>
<process expanded="true" height="588" width="459">
<operator activated="true" class="decision_tree" compatibility="5.2.002" expanded="true" height="76" name="Decision Tree" width="90" x="180" y="138">
<parameter key="criterion" value="gain_ratio"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_gain" value="0.1"/>
<parameter key="maximal_depth" value="20"/>
<parameter key="confidence" value="0.25"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
<parameter key="no_pre_pruning" value="false"/>
<parameter key="no_pruning" value="false"/>
</operator>
<connect from_port="training" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="588" width="459">
<operator activated="true" class="apply_model" compatibility="5.2.002" expanded="true" height="76" name="Apply Model" width="90" x="76" y="147">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance" compatibility="5.2.002" expanded="true" height="76" name="Performance" width="90" x="180" y="255">
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Process Documents from Files" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Process Documents from Files" from_port="word list" to_port="result 2"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="training" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
0
Answers
System properties:
------------
os properties:
os.name = Windows 7
os.version = 6.1
os.arch = x86
java properties:
java.home = C:\Program Files (x86)\Rapid-I\RapidMiner5\jre
java.endorsed.dirs = C:\Program Files (x86)\Rapid-I\RapidMiner5\jre\lib\endorsed
java.vendor.url = http://java.sun.com/
java.version = 1.6.0_31
java.vendor.url.bug = http://java.sun.com/cgi-bin/bugreport.cgi
java.runtime.name = Java(TM) SE Runtime Environment
java.specification.name = Java Platform API Specification
java.io.tmpdir = C:\Users\David\AppData\Local\Temp\
java.vm.info = mixed mode
java.vm.specification.name = Java Virtual Machine Specification
java.awt.printerjob = sun.awt.windows.WPrinterJob
java.specification.vendor = Sun Microsystems Inc.
java.vm.name = Java HotSpot(TM) Client VM
java.library.path = C:\Program Files (x86)\Rapid-I\RapidMiner5\jre\bin;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program Files\Common Files\Microsoft Shared\Windows Live;C:\Program Files (x86)\Common Files\Microsoft Shared\Windows Live;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files (x86)\Common Files\Lenovo;C:\Program Files (x86)\Common Files\Ulead Systems\MPEG;C:\Program Files (x86)\Windows Live\Shared;C:\Program Files (x86)\Lenovo\Access Connections\;C:\SWTOOLS\ReadyApps;C:\Program Files (x86)\Intel\Services\IPT\;C:\Program Files (x86)\Symantec\VIP Access Client\;C:\Program Files\Intel\WiFi\bin\;C:\Program Files\Common Files\Intel\WirelessCommon\;C:\Program Files\Common Files\Lenovo;C:\Program Files\Intel\WiFi\bin\;C:\Program Files\Common Files\Intel\WirelessCommon\;C:\Program Files (x86)\SSH Communications Security\SSH Secure Shell;.
java.class.version = 50.0
java.awt.graphicsenv = sun.awt.Win32GraphicsEnvironment
java.vm.specification.version = 1.0
java.ext.dirs = C:\Program Files (x86)\Rapid-I\RapidMiner5\jre\lib\ext;C:\Windows\Sun\Java\lib\ext
java.vm.vendor = Sun Microsystems Inc.
java.vm.version = 20.6-b01
java.class.path = lib/launcher.jar
java.vm.specification.vendor = Sun Microsystems Inc.
java.runtime.version = 1.6.0_31-b05
java.vendor = Sun Microsystems Inc.
java.specification.version = 1.6
RapidMiner Parameters:
ftp.nonProxyHosts =
ftp.proxyHost =
ftp.proxyPassword =
ftp.proxyPort =
ftp.proxySet = false
ftp.proxyUsername =
http.nonProxyHosts =
http.proxyHost =
http.proxyPassword =
http.proxyPort =
http.proxySet = false
http.proxyUsername =
https.proxyHost =
https.proxyPassword =
https.proxyPort =
https.proxySet = false
https.proxyUsername =
rapidminer.general.capabilities.warn = false
rapidminer.general.debugmode = false
rapidminer.general.encoding = UTF-8
rapidminer.general.fractiondigits.numbers = 3
rapidminer.general.fractiondigits.percent = 2
rapidminer.general.locale.language = en
rapidminer.general.logfile.format = no
rapidminer.general.max_rows_used_for_guessing = 100
rapidminer.general.md_nominal_values_limit = 100
rapidminer.general.number_of_threads = 0
rapidminer.general.randomseed = 2001
rapidminer.general.timezone = SYSTEM
rapidminer.gui.add_breakpoint_results_to_history = false
rapidminer.gui.attributeeditor.columnlimit = 20
rapidminer.gui.attributeeditor.rowlimit = 50
rapidminer.gui.auto_switch_to_resultview = true
rapidminer.gui.autowire_input = true
rapidminer.gui.autowire_output = true
rapidminer.gui.beep.breakpoint = true
rapidminer.gui.beep.error = true
rapidminer.gui.beep.success = true
rapidminer.gui.close_results_before_run = ask
rapidminer.gui.confirm_exit = false
rapidminer.gui.disconnect_on_disable = true
rapidminer.gui.evaluate_meta_data_for_sql_queries = true
rapidminer.gui.fetch_data_base_table_names = true
rapidminer.gui.log_level = CONFIG
rapidminer.gui.max_displayed_values = 50
rapidminer.gui.max_sortable_rows = 100000
rapidminer.gui.max_statistics_rows = 100000
rapidminer.gui.messageviewer.highlight.errors = 255,51,204
rapidminer.gui.messageviewer.highlight.logservice = 184,184,184
rapidminer.gui.messageviewer.highlight.notes = 51,151,51
rapidminer.gui.messageviewer.highlight.warnings = 51,51,255
rapidminer.gui.messageviewer.rowlimit = 1000
rapidminer.gui.plaf = system
rapidminer.gui.plotter.colors.classlimit = 10
rapidminer.gui.plotter.legend.classlimit = 20
rapidminer.gui.plotter.legend.maxcolor = 255,0,0
rapidminer.gui.plotter.legend.mincolor = 0,0,255
rapidminer.gui.plotter.matrixplot.size = 200
rapidminer.gui.plotter.rows.maximum = 5000
rapidminer.gui.processinfo.show = true
rapidminer.gui.resolve_relative_repository_locations = true
rapidminer.gui.result_display_type = docking
rapidminer.gui.save_before_run = ask
rapidminer.gui.save_on_process_creation = false
rapidminer.gui.savedialog = true
rapidminer.gui.snap_to_grid = true
rapidminer.gui.transfer_usagestats = ask
rapidminer.gui.undolist.size = 10
rapidminer.gui.update.check = true
rapidminer.init.plugins = true
rapidminer.init.plugins.location =
rapidminer.parallel.number_of_threads = 8
rapidminer.paren.wizard.meta_learning_model =
rapidminer.tools.db.assist.show_only_standard_tables = true
rapidminer.tools.editor =
rapidminer.tools.gnuplot.command = gnuplot
rapidminer.tools.mail.default_recipient =
rapidminer.tools.mail.method = SMTP
rapidminer.tools.mail.process_duration_for_mail = 30
rapidminer.tools.sendmail.command = /usr/sbin/sendmail
rapidminer.tools.smtp.host =
rapidminer.tools.smtp.passwd =
rapidminer.tools.smtp.port =
rapidminer.tools.smtp.user =
rapidminer.update.check = true
rapidminer.update.incremental = true
rapidminer.update.to_home = true
rapidminer.update.url = http://rapidupdate.de:80/UpdateServer
rapidminer.version = 5.2.001
socksProxyHost =
socksProxyPort =
i hope if some one can help me , thanks!
if the data is huge, you only have two possibilites:
a) reduce the size of your data, e.g. work on a subset of your input data (create a folder which contains only some of your files).
b) increase the maximum amount of memory which RapidMiner can use. You are on Windows 7, so you can go to the "scripts" folder of your RapidMiner instance, open RapidMinerGUI.bat with an editor and increase the value of the variable MAX_JAVA_MEMORY.
Then start RapidMiner by using that batch file.
Best,
Marius