The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Answers
Attached below is a process that uses a Bayesian Network inside x-validation.
It loads the famous play tennis data and builds a Bayesian Network (using -- -P 22 to get a real network).
I double checked that the results look the same in Weka as they do in Rapid Miner.
The only problem I can find is that you can not turn off the "use AD Tree" in Rapid Miner.
Correctly Classified Instances 9 64.2857 %
Incorrectly Classified Instances 5 35.7143 %
accuracy: 60.00% +/- 43.59% (mikro: 64.29%)
Best regards,
Wessel
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.006">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.006" expanded="true" name="Process">
<parameter key="logverbosity" value="status"/>
<process expanded="true" height="392" width="300">
<operator activated="true" class="retrieve" compatibility="5.2.006" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
<parameter key="repository_entry" value="//Samples/data/Golf"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.006" expanded="true" height="112" name="Validation" width="90" x="180" y="30">
<process expanded="true" height="392" width="165">
<operator activated="true" class="weka:W-BayesNet" compatibility="5.1.001" expanded="true" height="76" name="W-BayesNet" width="90" x="45" y="30">
<parameter key="Q" value="weka.classifiers.bayes.net.search.local.K2 -- -P 22 -S BAYES"/>
<parameter key="E" value="weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5"/>
</operator>
<connect from_port="training" to_op="W-BayesNet" to_port="training set"/>
<connect from_op="W-BayesNet" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="392" width="165">
<operator activated="true" class="apply_model" compatibility="5.2.006" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="5.2.006" expanded="true" height="76" name="Performance" width="90" x="45" y="120">
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="model" to_port="result 1"/>
<connect from_op="Validation" from_port="training" to_port="result 2"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
</process>
was getting butt load of wild errors with any weka learner in validation wrapped in param opt(worked fine with e.g. NN).
will look into it...
Weka learners can sometimes be a bit counter intuitive to get working, but they should work.
Now am testing some simple flows using xval,boostin... and all is fine.
maybe tomorrow ill try optimization again and will see.
Best, Marius