The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
bootstrapping_validation and W-PLSClassifier
Hi
There were problems in the development of the model.
process faild : matrix is singular
help.....
<operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
<process expanded="true" height="650" width="1090">
<operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve (3)" width="90" x="45" y="30">
<parameter key="repository_entry" value="MSN2AR/filter_BasicTSAR_MSN2AR_descriptor"/>
</operator>
<operator activated="true" class="parallel:optimize_selection_parallel" compatibility="5.1.000" expanded="true" height="94" name="Optimize Selection (2)" width="90" x="246" y="30">
<parameter key="generations_without_improval" value="2"/>
<parameter key="limit_number_of_generations" value="true"/>
<parameter key="keep_best" value="2"/>
<parameter key="maximum_number_of_generations" value="5"/>
<parameter key="user_result_individual_selection" value="true"/>
<parameter key="number_of_threads" value="8"/>
<process expanded="true" height="650" width="858">
<operator activated="true" class="bootstrapping_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation (2)" width="90" x="313" y="165">
<parameter key="use_local_random_seed" value="true"/>
<process expanded="true" height="668" width="404">
<operator activated="true" class="weka:W-PLSClassifier" compatibility="5.1.001" expanded="true" height="76" name="W-PLSClassifier (2)" width="90" x="179" y="30">
<parameter key="filter" value="weka.filters.supervised.attribute.PLSFilter -C 8 -A PLS1 -P standardize"/>
<parameter key="D" value="true"/>
</operator>
<connect from_port="training" to_op="W-PLSClassifier (2)" to_port="training set"/>
<connect from_op="W-PLSClassifier (2)" from_port="model" to_port="model"/>
<connect from_op="W-PLSClassifier (2)" from_port="exampleSet" to_port="through 1"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<portSpacing port="sink_through 2" spacing="0"/>
</process>
<process expanded="true" height="668" width="404">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model (2)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance (2)" width="90" x="224" y="30">
<parameter key="main_criterion" value="root_mean_squared_error"/>
<parameter key="absolute_error" value="true"/>
<parameter key="squared_correlation" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="source_through 2" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_port="example set" to_op="Validation (2)" to_port="training"/>
<connect from_op="Validation (2)" from_port="averagable 1" to_port="performance"/>
<portSpacing port="source_example set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
</process>
</operator>
<operator activated="true" class="weka:W-PLSClassifier" compatibility="5.1.001" expanded="true" height="76" name="W-PLSClassifier" width="90" x="447" y="30">
<parameter key="filter" value="weka.filters.supervised.attribute.PLSFilter -C 8 -A PLS 1 -P standardize"/>
<parameter key="D" value="true"/>
</operator>
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="581" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance" width="90" x="715" y="30">
<parameter key="main_criterion" value="root_mean_squared_error"/>
<parameter key="absolute_error" value="true"/>
<parameter key="squared_correlation" value="true"/>
</operator>
<connect from_op="Retrieve (3)" from_port="output" to_op="Optimize Selection (2)" to_port="example set in"/>
<connect from_op="Optimize Selection (2)" from_port="example set out" to_op="W-PLSClassifier" to_port="training set"/>
<connect from_op="W-PLSClassifier" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="W-PLSClassifier" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
There were problems in the development of the model.
process faild : matrix is singular
help.....
<operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
<process expanded="true" height="650" width="1090">
<operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve (3)" width="90" x="45" y="30">
<parameter key="repository_entry" value="MSN2AR/filter_BasicTSAR_MSN2AR_descriptor"/>
</operator>
<operator activated="true" class="parallel:optimize_selection_parallel" compatibility="5.1.000" expanded="true" height="94" name="Optimize Selection (2)" width="90" x="246" y="30">
<parameter key="generations_without_improval" value="2"/>
<parameter key="limit_number_of_generations" value="true"/>
<parameter key="keep_best" value="2"/>
<parameter key="maximum_number_of_generations" value="5"/>
<parameter key="user_result_individual_selection" value="true"/>
<parameter key="number_of_threads" value="8"/>
<process expanded="true" height="650" width="858">
<operator activated="true" class="bootstrapping_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation (2)" width="90" x="313" y="165">
<parameter key="use_local_random_seed" value="true"/>
<process expanded="true" height="668" width="404">
<operator activated="true" class="weka:W-PLSClassifier" compatibility="5.1.001" expanded="true" height="76" name="W-PLSClassifier (2)" width="90" x="179" y="30">
<parameter key="filter" value="weka.filters.supervised.attribute.PLSFilter -C 8 -A PLS1 -P standardize"/>
<parameter key="D" value="true"/>
</operator>
<connect from_port="training" to_op="W-PLSClassifier (2)" to_port="training set"/>
<connect from_op="W-PLSClassifier (2)" from_port="model" to_port="model"/>
<connect from_op="W-PLSClassifier (2)" from_port="exampleSet" to_port="through 1"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<portSpacing port="sink_through 2" spacing="0"/>
</process>
<process expanded="true" height="668" width="404">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model (2)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance (2)" width="90" x="224" y="30">
<parameter key="main_criterion" value="root_mean_squared_error"/>
<parameter key="absolute_error" value="true"/>
<parameter key="squared_correlation" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="source_through 2" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_port="example set" to_op="Validation (2)" to_port="training"/>
<connect from_op="Validation (2)" from_port="averagable 1" to_port="performance"/>
<portSpacing port="source_example set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
</process>
</operator>
<operator activated="true" class="weka:W-PLSClassifier" compatibility="5.1.001" expanded="true" height="76" name="W-PLSClassifier" width="90" x="447" y="30">
<parameter key="filter" value="weka.filters.supervised.attribute.PLSFilter -C 8 -A PLS 1 -P standardize"/>
<parameter key="D" value="true"/>
</operator>
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="581" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance" width="90" x="715" y="30">
<parameter key="main_criterion" value="root_mean_squared_error"/>
<parameter key="absolute_error" value="true"/>
<parameter key="squared_correlation" value="true"/>
</operator>
<connect from_op="Retrieve (3)" from_port="output" to_op="Optimize Selection (2)" to_port="example set in"/>
<connect from_op="Optimize Selection (2)" from_port="example set out" to_op="W-PLSClassifier" to_port="training set"/>
<connect from_op="W-PLSClassifier" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="W-PLSClassifier" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
0
Answers
please post the complete process xml using the steps described in the post which is linked in my signature.
Best,
Marius
<process version="5.2.008">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
<process expanded="true" height="650" width="1090">
<operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve (3)" width="90" x="45" y="30">
<parameter key="repository_entry" value="MSN2AR/filter_BasicTSAR_MSN2AR_descriptor"/>
</operator>
<operator activated="true" class="parallel:optimize_selection_parallel" compatibility="5.1.000" expanded="true" height="94" name="Optimize Selection (2)" width="90" x="246" y="30">
<parameter key="generations_without_improval" value="2"/>
<parameter key="limit_number_of_generations" value="true"/>
<parameter key="keep_best" value="2"/>
<parameter key="maximum_number_of_generations" value="5"/>
<parameter key="user_result_individual_selection" value="true"/>
<parameter key="number_of_threads" value="8"/>
<process expanded="true" height="650" width="858">
<operator activated="true" class="bootstrapping_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation (2)" width="90" x="313" y="165">
<parameter key="use_local_random_seed" value="true"/>
<process expanded="true" height="668" width="404">
<operator activated="true" class="weka:W-PLSClassifier" compatibility="5.1.001" expanded="true" height="76" name="W-PLSClassifier (2)" width="90" x="179" y="30">
<parameter key="filter" value="weka.filters.supervised.attribute.PLSFilter -C 8 -A PLS1 -P standardize"/>
<parameter key="D" value="true"/>
</operator>
<connect from_port="training" to_op="W-PLSClassifier (2)" to_port="training set"/>
<connect from_op="W-PLSClassifier (2)" from_port="model" to_port="model"/>
<connect from_op="W-PLSClassifier (2)" from_port="exampleSet" to_port="through 1"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<portSpacing port="sink_through 2" spacing="0"/>
</process>
<process expanded="true" height="668" width="404">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model (2)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance (2)" width="90" x="224" y="30">
<parameter key="main_criterion" value="root_mean_squared_error"/>
<parameter key="absolute_error" value="true"/>
<parameter key="squared_correlation" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="source_through 2" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_port="example set" to_op="Validation (2)" to_port="training"/>
<connect from_op="Validation (2)" from_port="averagable 1" to_port="performance"/>
<portSpacing port="source_example set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
</process>
</operator>
<operator activated="true" class="weka:W-PLSClassifier" compatibility="5.1.001" expanded="true" height="76" name="W-PLSClassifier" width="90" x="447" y="30">
<parameter key="filter" value="weka.filters.supervised.attribute.PLSFilter -C 8 -A PLS 1 -P standardize"/>
<parameter key="D" value="true"/>
</operator>
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="581" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance" width="90" x="715" y="30">
<parameter key="main_criterion" value="root_mean_squared_error"/>
<parameter key="absolute_error" value="true"/>
<parameter key="squared_correlation" value="true"/>
</operator>
<connect from_op="Retrieve (3)" from_port="output" to_op="Optimize Selection (2)" to_port="example set in"/>
<connect from_op="Optimize Selection (2)" from_port="example set out" to_op="W-PLSClassifier" to_port="training set"/>
<connect from_op="W-PLSClassifier" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="W-PLSClassifier" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
thank you.
One remark on your process: after the feature selection, you create the model on the training data, but you also apply it and evaluate the performance on the training data - instead you should use a X-Validation here.
Best,
Marius