The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

"[Solved] Set Macro dynamically based on Dataset"

aryan_hosseinzaaryan_hosseinza Member Posts: 74 Contributor II
edited June 2019 in Help
Hi ,

I am doing a down sampling by use of clustering , it's an imbalanced dataset which the number of example with 'f' label is about 6 times more than the number of examples with 't' label,

I want to set the K in clustering module equals to number of 't' examples in the dataset ,

How can I do that ?

Thanks

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.008">
 <context>
   <input/>
   <output/>
   <macros/>
 </context>
 <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
   <process expanded="true" height="539" width="2225">
     <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" y="75">
       <parameter key="repository_entry" value="//NewLocalRepository/temp_5000sampled_MI4"/>
     </operator>
     <operator activated="true" class="sample_stratified" compatibility="5.2.008" expanded="true" height="76" name="Sample (Stratified)" width="90" x="112" y="210">
       <parameter key="sample" value="relative"/>
     </operator>
     <operator activated="true" class="nominal_to_numerical" compatibility="5.2.008" expanded="true" height="94" name="Nominal to Numerical" width="90" x="246" y="75">
       <parameter key="attribute_filter_type" value="single"/>
       <parameter key="attribute" value="sex"/>
       <list key="comparison_groups"/>
     </operator>
     <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize" width="90" x="380" y="75"/>
     <operator activated="false" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="345">
       <parameter key="attribute_filter_type" value="single"/>
       <parameter key="attribute" value="event"/>
       <parameter key="invert_selection" value="true"/>
     </operator>
     <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply" width="90" x="581" y="75"/>
     <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" width="90" x="782" y="255">
       <parameter key="condition_class" value="attribute_value_filter"/>
       <parameter key="parameter_string" value="event=t"/>
     </operator>
     <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" width="90" x="782" y="30">
       <parameter key="condition_class" value="attribute_value_filter"/>
       <parameter key="parameter_string" value="event=f"/>
     </operator>
     <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply (2)" width="90" x="916" y="30"/>
     <operator activated="true" class="k_means" compatibility="5.2.008" expanded="true" height="76" name="Clustering" width="90" x="1117" y="30">
       <parameter key="k" value="4"/>
       <parameter key="max_runs" value="100"/>
       <parameter key="measure_types" value="MixedMeasures"/>
     </operator>
     <operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="1117" y="165">
       <list key="application_parameters"/>
     </operator>
     <operator activated="true" class="remove_duplicates" compatibility="5.2.008" expanded="true" height="76" name="Remove Duplicates" width="90" x="1452" y="165">
       <parameter key="attribute_filter_type" value="single"/>
       <parameter key="attribute" value="cluster"/>
       <parameter key="include_special_attributes" value="true"/>
     </operator>
     <operator activated="true" class="union" compatibility="5.2.008" expanded="true" height="76" name="Union" width="90" x="1720" y="210"/>
     <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (3)" width="90" x="1921" y="210">
       <parameter key="attribute_filter_type" value="single"/>
       <parameter key="attribute" value="cluster"/>
       <parameter key="invert_selection" value="true"/>
       <parameter key="include_special_attributes" value="true"/>
     </operator>
     <operator activated="true" class="shuffle" compatibility="5.2.008" expanded="true" height="76" name="Shuffle" width="90" x="2055" y="210"/>
     <connect from_op="Retrieve" from_port="output" to_op="Sample (Stratified)" to_port="example set input"/>
     <connect from_op="Sample (Stratified)" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
     <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Normalize" to_port="example set input"/>
     <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/>
     <connect from_op="Multiply" from_port="output 1" to_op="Filter Examples" to_port="example set input"/>
     <connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (2)" to_port="example set input"/>
     <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Union" to_port="example set 2"/>
     <connect from_op="Filter Examples" from_port="example set output" to_op="Multiply (2)" to_port="input"/>
     <connect from_op="Multiply (2)" from_port="output 1" to_op="Clustering" to_port="example set"/>
     <connect from_op="Multiply (2)" from_port="output 2" to_op="Apply Model" to_port="unlabelled data"/>
     <connect from_op="Clustering" from_port="cluster model" to_op="Apply Model" to_port="model"/>
     <connect from_op="Apply Model" from_port="labelled data" to_op="Remove Duplicates" to_port="example set input"/>
     <connect from_op="Remove Duplicates" from_port="example set output" to_op="Union" to_port="example set 1"/>
     <connect from_op="Union" from_port="union" to_op="Select Attributes (3)" to_port="example set input"/>
     <connect from_op="Select Attributes (3)" from_port="example set output" to_op="Shuffle" to_port="example set input"/>
     <connect from_op="Shuffle" from_port="example set output" to_port="result 1"/>
     <portSpacing port="source_input 1" spacing="0"/>
     <portSpacing port="sink_result 1" spacing="0"/>
     <portSpacing port="sink_result 2" spacing="0"/>
   </process>
 </operator>
</process>
Tagged:

Answers

  • awchisholmawchisholm RapidMiner Certified Expert, Member Posts: 458 Unicorn
    Hello,

    One approach is to set a macro equal to the number of rows where the label is 't'. This can be done using the "Extract Macro" operator.

    Then you need to use this macro as a parameter to the k-means operator.

    It's very important to make sure the extraction happens before the k-means otherwise you will get an error.

    I don't have your data so I can't test it but here's an example
    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.2.008">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
        <process expanded="true" height="661" width="1030">
          <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
            <parameter key="repository_entry" value="//NewLocalRepository/temp_5000sampled_MI4"/>
          </operator>
          <operator activated="true" class="sample_stratified" compatibility="5.2.008" expanded="true" height="76" name="Sample (Stratified)" width="90" x="45" y="120">
            <parameter key="sample" value="relative"/>
          </operator>
          <operator activated="true" class="nominal_to_numerical" compatibility="5.2.008" expanded="true" height="94" name="Nominal to Numerical" width="90" x="179" y="30">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="sex"/>
            <list key="comparison_groups"/>
          </operator>
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize" width="90" x="179" y="165"/>
          <operator activated="false" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes" width="90" x="45" y="300">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="event"/>
            <parameter key="invert_selection" value="true"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply" width="90" x="179" y="300"/>
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" width="90" x="313" y="300">
            <parameter key="condition_class" value="attribute_value_filter"/>
            <parameter key="parameter_string" value="event=t"/>
          </operator>
          <operator activated="true" class="extract_macro" compatibility="5.2.008" expanded="true" height="60" name="Extract Macro" width="90" x="313" y="390">
            <parameter key="macro" value="k"/>
          </operator>
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" width="90" x="313" y="30">
            <parameter key="condition_class" value="attribute_value_filter"/>
            <parameter key="parameter_string" value="event=f"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply (2)" width="90" x="313" y="120"/>
          <operator activated="true" class="k_means" compatibility="5.2.008" expanded="true" height="76" name="Clustering" width="90" x="447" y="30">
            <parameter key="k" value="%{k}"/>
            <parameter key="max_runs" value="100"/>
            <parameter key="measure_types" value="MixedMeasures"/>
          </operator>
          <operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="447" y="120">
            <list key="application_parameters"/>
          </operator>
          <operator activated="true" class="remove_duplicates" compatibility="5.2.008" expanded="true" height="76" name="Remove Duplicates" width="90" x="447" y="210">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="cluster"/>
            <parameter key="include_special_attributes" value="true"/>
          </operator>
          <operator activated="true" class="union" compatibility="5.2.008" expanded="true" height="76" name="Union" width="90" x="581" y="255"/>
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (3)" width="90" x="581" y="345">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="cluster"/>
            <parameter key="invert_selection" value="true"/>
            <parameter key="include_special_attributes" value="true"/>
          </operator>
          <operator activated="true" class="shuffle" compatibility="5.2.008" expanded="true" height="76" name="Shuffle" width="90" x="581" y="435"/>
          <connect from_op="Retrieve" from_port="output" to_op="Sample (Stratified)" to_port="example set input"/>
          <connect from_op="Sample (Stratified)" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
          <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Normalize" to_port="example set input"/>
          <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/>
          <connect from_op="Multiply" from_port="output 1" to_op="Filter Examples" to_port="example set input"/>
          <connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (2)" to_port="example set input"/>
          <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Extract Macro" to_port="example set"/>
          <connect from_op="Extract Macro" from_port="example set" to_op="Union" to_port="example set 2"/>
          <connect from_op="Filter Examples" from_port="example set output" to_op="Multiply (2)" to_port="input"/>
          <connect from_op="Multiply (2)" from_port="output 1" to_op="Clustering" to_port="example set"/>
          <connect from_op="Multiply (2)" from_port="output 2" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Clustering" from_port="cluster model" to_op="Apply Model" to_port="model"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Remove Duplicates" to_port="example set input"/>
          <connect from_op="Remove Duplicates" from_port="example set output" to_op="Union" to_port="example set 1"/>
          <connect from_op="Union" from_port="union" to_op="Select Attributes (3)" to_port="example set input"/>
          <connect from_op="Select Attributes (3)" from_port="example set output" to_op="Shuffle" to_port="example set input"/>
          <connect from_op="Shuffle" from_port="example set output" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
    regards

    Andrew
  • aryan_hosseinzaaryan_hosseinza Member Posts: 74 Contributor II
    It returns error : A value for the parameter 'k' must be specified , but I already set 'k' before reaching the clustering , Should we refer to macro with %{} ?


    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.2.008">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
        <process expanded="true" height="566" width="2225">
          <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" y="75">
            <parameter key="repository_entry" value="//NewLocalRepository/temp_5000sampled_MI4"/>
          </operator>
          <operator activated="false" class="sample_stratified" compatibility="5.2.008" expanded="true" height="76" name="Sample (Stratified)" width="90" x="179" y="210">
            <parameter key="sample" value="relative"/>
          </operator>
          <operator activated="true" class="nominal_to_numerical" compatibility="5.2.008" expanded="true" height="94" name="Nominal to Numerical" width="90" x="179" y="75">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="sex"/>
            <list key="comparison_groups"/>
          </operator>
          <operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize" width="90" x="313" y="75"/>
          <operator activated="false" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="345">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="event"/>
            <parameter key="invert_selection" value="true"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply (3)" width="90" x="447" y="75"/>
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (3)" width="90" x="581" y="30">
            <parameter key="condition_class" value="attribute_value_filter"/>
            <parameter key="parameter_string" value="event=t"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply" width="90" x="715" y="165"/>
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (4)" width="90" x="849" y="300">
            <parameter key="condition_class" value="attribute_value_filter"/>
            <parameter key="parameter_string" value="event=t"/>
          </operator>
          <operator activated="false" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" width="90" x="648" y="480">
            <parameter key="condition_class" value="attribute_value_filter"/>
            <parameter key="parameter_string" value="event=t"/>
          </operator>
          <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" width="90" x="849" y="30">
            <parameter key="condition_class" value="attribute_value_filter"/>
            <parameter key="parameter_string" value="event=f"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply (2)" width="90" x="983" y="165"/>
          <operator activated="true" class="k_means" compatibility="5.2.008" expanded="true" height="76" name="Clustering" width="90" x="1117" y="30">
            <parameter key="max_runs" value="100"/>
            <parameter key="measure_types" value="MixedMeasures"/>
          </operator>
          <operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="1251" y="165">
            <list key="application_parameters"/>
          </operator>
          <operator activated="true" class="remove_duplicates" compatibility="5.2.008" expanded="true" height="76" name="Remove Duplicates" width="90" x="1452" y="165">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="cluster"/>
            <parameter key="include_special_attributes" value="true"/>
          </operator>
          <operator activated="true" class="extract_macro" compatibility="5.2.008" expanded="true" height="60" name="Extract Macro" width="90" x="715" y="30">
            <parameter key="macro" value="k"/>
            <parameter key="attribute_name" value="event"/>
          </operator>
          <operator activated="true" class="union" compatibility="5.2.008" expanded="true" height="76" name="Union" width="90" x="1854" y="255"/>
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes (3)" width="90" x="1988" y="255">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="cluster"/>
            <parameter key="invert_selection" value="true"/>
            <parameter key="include_special_attributes" value="true"/>
          </operator>
          <operator activated="true" class="shuffle" compatibility="5.2.008" expanded="true" height="76" name="Shuffle" width="90" x="2122" y="255"/>
          <connect from_op="Retrieve" from_port="output" to_op="Nominal to Numerical" to_port="example set input"/>
          <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Normalize" to_port="example set input"/>
          <connect from_op="Normalize" from_port="example set output" to_op="Multiply (3)" to_port="input"/>
          <connect from_op="Multiply (3)" from_port="output 1" to_op="Filter Examples (3)" to_port="example set input"/>
          <connect from_op="Multiply (3)" from_port="output 2" to_op="Multiply" to_port="input"/>
          <connect from_op="Filter Examples (3)" from_port="example set output" to_op="Extract Macro" to_port="example set"/>
          <connect from_op="Multiply" from_port="output 1" to_op="Filter Examples" to_port="example set input"/>
          <connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (4)" to_port="example set input"/>
          <connect from_op="Filter Examples (4)" from_port="example set output" to_op="Union" to_port="example set 2"/>
          <connect from_op="Filter Examples" from_port="example set output" to_op="Multiply (2)" to_port="input"/>
          <connect from_op="Multiply (2)" from_port="output 1" to_op="Clustering" to_port="example set"/>
          <connect from_op="Multiply (2)" from_port="output 2" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Clustering" from_port="cluster model" to_op="Apply Model" to_port="model"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Remove Duplicates" to_port="example set input"/>
          <connect from_op="Remove Duplicates" from_port="example set output" to_op="Union" to_port="example set 1"/>
          <connect from_op="Union" from_port="union" to_op="Select Attributes (3)" to_port="example set input"/>
          <connect from_op="Select Attributes (3)" from_port="example set output" to_op="Shuffle" to_port="example set input"/>
          <connect from_op="Shuffle" from_port="example set output" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
  • awchisholmawchisholm RapidMiner Certified Expert, Member Posts: 458 Unicorn
    Hello

    The calculation of the macro is happening after it is being used. Change the ordering from the GUI using Process->Operator Execution Order->Order Execution.

    regards

    Andrew
  • aryan_hosseinzaaryan_hosseinza Member Posts: 74 Contributor II
    Thanks for your help, it works.
Sign In or Register to comment.