The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"[Solved]Loop Macro Values"
aryan_hosseinza
Member Posts: 74 Contributor II
Hi everybody,
I want to do a random sampling by setting a macro & looping on different values , but it seems that when I loop through the values , only the first value is applied ,
Actually as the result of the following code I want to have a multiple files each containing the result of the X-validation , but it only applies the first value,
Thanks ,
I want to do a random sampling by setting a macro & looping on different values , but it seems that when I loop through the values , only the first value is applied ,
Actually as the result of the following code I want to have a multiple files each containing the result of the X-validation , but it only applies the first value,
Thanks ,
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.008">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
<process expanded="true" height="738" width="1907">
<operator activated="true" class="read_csv" compatibility="5.2.008" expanded="true" height="60" name="Read CSV" width="90" x="514" y="120">
<parameter key="csv_file" value="/home/arian/RM/result/dataSet_Nominal_10PercentRandomSample"/>
<parameter key="column_separators" value=","/>
<parameter key="date_format" value="yyyy-MM-dd HH:mm:ss"/>
<list key="annotations"/>
<list key="data_set_meta_data_information"/>
</operator>
<operator activated="true" class="loop_parameters" compatibility="5.2.008" expanded="true" height="76" name="Loop Parameters" width="90" x="1251" y="120">
<list key="parameters">
<parameter key="Set Macro.value" value=" 0.1315,0.19725,0.263,0.32875,0.3945,0.46025,0.526"/>
</list>
<parameter key="parallelize_subprocess" value="true"/>
<process expanded="true" height="602" width="895">
<operator activated="true" class="set_macro" compatibility="5.2.008" expanded="true" height="76" name="Set Macro" width="90" x="112" y="30">
<parameter key="macro" value="%{r}"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation" width="90" x="313" y="30">
<parameter key="number_of_validations" value="3"/>
<parameter key="use_local_random_seed" value="true"/>
<parameter key="parallelize_training" value="true"/>
<parameter key="parallelize_testing" value="true"/>
<process expanded="true" height="620" width="951">
<operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply" width="90" x="45" y="30"/>
<operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" width="90" x="246" y="30">
<parameter key="condition_class" value="attribute_value_filter"/>
<parameter key="parameter_string" value="event=f"/>
</operator>
<operator activated="true" class="sample" compatibility="5.2.008" expanded="true" height="76" name="DownSample" width="90" x="380" y="30">
<parameter key="sample" value="relative"/>
<parameter key="sample_ratio" value="%{r}"/>
<list key="sample_size_per_class"/>
<list key="sample_ratio_per_class"/>
<list key="sample_probability_per_class"/>
<parameter key="use_local_random_seed" value="true"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (2)" width="90" x="179" y="390">
<parameter key="condition_class" value="attribute_value_filter"/>
<parameter key="parameter_string" value="event=t"/>
</operator>
<operator activated="true" class="append" compatibility="5.2.008" expanded="true" height="94" name="Append" width="90" x="581" y="390"/>
<operator activated="true" class="naive_bayes" compatibility="5.2.008" expanded="true" height="76" name="Naive Bayes" width="90" x="782" y="390"/>
<connect from_port="training" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (2)" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="DownSample" to_port="example set input"/>
<connect from_op="DownSample" from_port="example set output" to_op="Append" to_port="example set 1"/>
<connect from_op="Filter Examples (2)" from_port="example set output" to_op="Append" to_port="example set 2"/>
<connect from_op="Append" from_port="merged set" to_op="Naive Bayes" to_port="training set"/>
<connect from_op="Naive Bayes" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="620" width="431">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_binominal_classification" compatibility="5.2.008" expanded="true" height="76" name="Performance" width="90" x="238" y="30">
<parameter key="accuracy" value="false"/>
<parameter key="AUC" value="true"/>
<parameter key="f_measure" value="true"/>
<parameter key="false_positive" value="true"/>
<parameter key="false_negative" value="true"/>
<parameter key="true_positive" value="true"/>
<parameter key="true_negative" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="write_as_text" compatibility="5.2.008" expanded="true" height="76" name="Write as Text" width="90" x="581" y="30">
<parameter key="result_file" value="/home/arian/Desktop/results_downsampling_Dec_5th/result_%{r}"/>
</operator>
<connect from_port="input 1" to_op="Set Macro" to_port="through 1"/>
<connect from_op="Set Macro" from_port="through 1" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_op="Write as Text" to_port="input 1"/>
<connect from_op="Write as Text" from_port="input 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
<connect from_op="Read CSV" from_port="output" to_op="Loop Parameters" to_port="input 1"/>
<connect from_op="Loop Parameters" from_port="result 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
Tagged:
0
Answers
To put it in a nutshell, replace "%{r}" with "r" in the "Set Macro" operator.