The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Negative class in polynomial labels? - Binary2MultiClassLearner

SchalkekidSchalkekid Member Posts: 17 Maven
edited November 2018 in Help
Hi all,
I have the following problem (and I hope that I will describe it understandably):
I am processing a dataset containing polynomial labels including n-1 "positive" labeltypes and one negative (standard) label-type.
I am using the Binary2MultiClassLearner because the learner I use is a binary SVM.
The problem now exactly is, that the "negative" class dominates the dataset and the SVM just predicts the "negative" class .
For binominal labels it is possible to define the positive class. It would be nice if one could define the negative class for my problem, is this possible?

Thank you.

Best,
schalkekid

Answers

  • haddockhaddock Member Posts: 849 Maven
    Hi,

    As you surmised, SVMs default to the most frequent label value when no separating pattern is found. You can try the EqualLabelWeighting operator, which beefs up the importance of examples with rare labels, or you can construct a new label attribute in which all the non-negative values are merged, and then bin the old label attribute. In the latter case you would use the AttributeConstruction operator, which is discussed below in this forum...

    [url=http://rapid-i.com/rapidforum/index.php/topic,580.0.html[/url], click to go there.
Sign In or Register to comment.