input example set does not have a label attribute
Best Answers
-
Thomas_Ott RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,761
Unicorn
Ah your process is not quite right. I would use the Cross Validation building block and encapusltate the Linear Regression/Apply Model/Perf measure in there. then pass the Test set. See this example:
<?xml version="1.0" encoding="UTF-8"?><process version="7.5.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.5.001" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.5.001" expanded="true" height="68" name="Training Set" width="90" x="45" y="34">
<parameter key="repository_entry" value="//Samples/data/Sonar"/>
</operator>
<operator activated="true" class="concurrency:cross_validation" compatibility="7.5.001" expanded="true" height="145" name="Validation" width="90" x="313" y="34">
<parameter key="sampling_type" value="shuffled sampling"/>
<process expanded="true">
<operator activated="true" class="h2o:generalized_linear_model" compatibility="7.2.000" expanded="true" height="82" name="Generalized Linear Model" width="90" x="45" y="34">
<list key="beta_constraints"/>
<list key="expert_parameters"/>
</operator>
<connect from_port="training set" to_op="Generalized Linear Model" to_port="training set"/>
<connect from_op="Generalized Linear Model" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<description align="left" color="green" colored="true" height="113" resized="true" width="284" x="33" y="148">Builds a model on the current training data set (90 % of the data by default, 10 times).<br><br>Make sure that you only put numerical attributes into a linear regression!</description>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="7.5.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="7.5.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
<description align="left" color="blue" colored="true" height="107" resized="true" width="333" x="28" y="139">Applies the model built from the training data set on the current test set (10 % by default).<br/>The Performance operator calculates performance indicators and sends them to the operator result.</description>
</process>
<description align="center" color="transparent" colored="false" width="126">A cross validation including a linear regression.</description>
</operator>
<operator activated="true" class="retrieve" compatibility="7.5.001" expanded="true" height="68" name="Testing Set" width="90" x="45" y="289">
<parameter key="repository_entry" value="//Samples/data/Sonar"/>
</operator>
<operator activated="true" class="apply_model" compatibility="7.5.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="581" y="187">
<list key="application_parameters"/>
</operator>
<connect from_op="Training Set" from_port="output" to_op="Validation" to_port="example set"/>
<connect from_op="Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Validation" from_port="performance 1" to_port="result 2"/>
<connect from_op="Testing Set" from_port="output" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>This way you can an honest evaluation and performance measure of your model.
Good luck on your Kaggle, let us know how well you place. We'll give you some swag.
1 -
Thomas_Ott RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,761
Unicorn
Hey, there are no dumb questions.
GLM is a better algorithm in some cases. You can swap it out with a LR if you like. In fact, you might want even try a SVM in some cases because of the "no free lunch" theorm.
Too output the performance results, just connect the PER port on the Cross Validation to the RES port.
0
Answers
I was able to run the process successfully but I have 2 questions.
First, why should we use GLM instead of the normal Linear Regression operator?
Second, is there a method to output my model's accuracy after running the processes?
My apologies if my questions are dumb, is my second time using RapidMiner :cathappy: