The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

How to calculate Normalized Mutual Information (NMI) for Clustering?

saedeh990saedeh990 Member Posts: 2 Contributor I
edited November 2018 in Help

Hi dear friends

How can I use Normalized Mutual Information (NMI) for Clustering? like K-Means or DBSCAN

I attach the file

Thank's

Tagged:

Answers

  • Thomas_OttThomas_Ott RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,761 Unicorn

    You could build a process using the k-means and/or DBSCAN operators?

  • saedeh990saedeh990 Member Posts: 2 Contributor I

    I used K_Means and DBSCAN, but I want to evaluate these methods by NMI.

  • Thomas_OttThomas_Ott RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,761 Unicorn

    You might want to check out the Mutual Information Matrix operator. See below.

     

    <?xml version="1.0" encoding="UTF-8"?><process version="7.5.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="7.5.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="read_csv" compatibility="7.5.001" expanded="true" height="68" name="Read CSV" width="90" x="45" y="34">
    <parameter key="csv_file" value="C:\Users\ThomasOtt\Downloads\AccXYZ.csv"/>
    <parameter key="column_separators" value=","/>
    <parameter key="first_row_as_names" value="false"/>
    <list key="annotations">
    <parameter key="0" value="Name"/>
    </list>
    <list key="data_set_meta_data_information"/>
    </operator>
    <operator activated="true" class="k_means" compatibility="7.5.001" expanded="true" height="82" name="Clustering" width="90" x="179" y="34">
    <parameter key="k" value="5"/>
    </operator>
    <operator activated="true" class="extract_prototypes" compatibility="7.5.001" expanded="true" height="82" name="Extract Cluster Prototypes" width="90" x="313" y="34"/>
    <operator activated="true" class="mututal_information_matrix" compatibility="7.5.001" expanded="true" height="82" name="Mutual Information Matrix" width="90" x="447" y="34"/>
    <connect from_op="Read CSV" from_port="output" to_op="Clustering" to_port="example set"/>
    <connect from_op="Clustering" from_port="cluster model" to_op="Extract Cluster Prototypes" to_port="model"/>
    <connect from_op="Extract Cluster Prototypes" from_port="example set" to_op="Mutual Information Matrix" to_port="example set"/>
    <connect from_op="Mutual Information Matrix" from_port="example set" to_port="result 1"/>
    <connect from_op="Mutual Information Matrix" from_port="matrix" to_port="result 2"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    </process>
    </operator>
    </process>
Sign In or Register to comment.