The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Access Fast Large Margin Weights
MartinLiebig
Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
Fast Large Margin is an SVM-Like algorithm which runs in O(n). This is very nice in terms of run time. It provides coefficient for each attribute which might be used as weights. To access them you need to use a small Groovy script in an Execute Script operator:
import com.rapidminer.operator.learner.functions.FastMarginModel;
import java.util.logging.Level;
import com.rapidminer.tools.Ontology;
import com.rapidminer.example.utils.ExampleSetBuilder;
import com.rapidminer.example.utils.ExampleSets;
FastMarginModel inputmodel = input[0];
ArrayList<Attribute> attributes = new ArrayList<Attribute>();
attributes.add(AttributeFactory.createAttribute("word", Ontology.NOMINAL));
attributes.add(AttributeFactory.createAttribute("weight", Ontology.REAL));
ExampleSetBuilder builder = ExampleSets.from(attributes);
for(int i = 0; i < inputmodel.attributeConstructions.length; ++i){
double[] values = new double[2];
values[0] = attributes.get(0).getMapping().mapString(inputmodel.attributeConstructions[i]);
values[1] = inputmodel.linearModel.w[i]
builder.addRow(values);
}
return builder.build()
Attached is a process demonstrating this.
- Sr. Director Data Solutions, Altair RapidMiner -
Dortmund, Germany
Dortmund, Germany
Tagged:
0