The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Am I building my Deep Learning model right?

jakob_roetnerjakob_roetner Member Posts: 2 Contributor I
edited November 2018 in Help

I'm building a Deep Learning model in Rapidminer right now and I have some basic knowledge in Machine Learning, but I'm sometimes a bit confused how to implement my ideas in Rapidminer.

 

The basic idea is this:

 

  • I have a dataset which I cluster with an HMM before the training in Rapidminer - The goal is to use the data from one state ("E1") to train my Deep Learning model and afterwards predict some Label ("TRUE"/"FALSE") in the rest of the dataset (so in principal every state, except E1)
  • Plus, I have a class imbalance in my data, I have way more "FALSE" labels than "TRUE" ones

 

My way of implementing this problem in Rapidminer is this:

 

  • I retrieve the two datasets and create weights for the different labels (TRUE gets assigned a weight of 10, FALSE gets assigned a weight of 1) for dealing with the class imbalance. Afterwards I sample 50% of the training set, and run it through a Deep Learning classifier including a  Leave-One-Out Cross-Validation
  • Afterwards I apply this model to the Test set and predict the Performance (Binomial, because it's a binomial label)

I appended the two input files (anonymized in a way, that I can post them here and they're still enough for training/testing) and my Process as an XML-file.

 

My question now is, if there are any pitfalls or any basic things I'm overlooking? I'm still quite a beginner in the Machine Learning department and a complete beginner in Rapidminer. I'm just not sure if my way is scientificly correct, or if it could be better implemented in Rapidminer.

 

Best regards and thanks for your help :)

 

Jakob

 

 

<?xml version="1.0" encoding="UTF-8"?><process version="7.5.003">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.5.003" expanded="true" height="68" name="Retrieve Vista_wo_E1" width="90" x="45" y="238">
<parameter key="repository_entry" value="//Local Repository/Vista_wo_E1"/>
</operator>
<operator activated="true" class="retrieve" compatibility="7.5.003" expanded="true" height="68" name="Retrieve Vista_E1" width="90" x="45" y="34">
<parameter key="repository_entry" value="//Local Repository/Vista_E1"/>
</operator>
<operator activated="true" class="subprocess" compatibility="7.5.003" expanded="true" height="103" name="Set weight" width="90" x="179" y="34">
<process expanded="true">
<operator activated="true" class="generate_attributes" compatibility="7.5.003" expanded="true" height="82" name="Generate Attributes (2)" width="90" x="45" y="187">
<list key="function_descriptions">
<parameter key="label" value="if([isHeart] == &quot;FALSE&quot;,0,1)"/>
</list>
<parameter key="keep_all" value="true"/>
</operator>
<operator activated="true" class="generate_attributes" compatibility="7.5.003" expanded="true" height="82" name="Generate Attributes (5)" width="90" x="179" y="187">
<list key="function_descriptions">
<parameter key="weight" value="if([label]==0,1,10)"/>
</list>
<parameter key="keep_all" value="true"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.5.003" expanded="true" height="82" name="Set Role (3)" width="90" x="313" y="187">
<parameter key="attribute_name" value="weight"/>
<parameter key="target_role" value="weight"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="numerical_to_binominal" compatibility="7.5.003" expanded="true" height="82" name="Numerical to Binominal (2)" width="90" x="514" y="187">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="label"/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="numeric"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="real"/>
<parameter key="block_type" value="value_series"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_series_end"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="true"/>
<parameter key="min" value="0.0"/>
<parameter key="max" value="0.0"/>
</operator>
<operator activated="true" class="sample_bootstrapping" compatibility="7.5.003" expanded="true" height="82" name="Sample (3)" width="90" x="715" y="187">
<parameter key="sample" value="relative"/>
<parameter key="sample_size" value="100"/>
<parameter key="sample_ratio" value="0.5"/>
<parameter key="use_weights" value="true"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="numerical_to_polynominal" compatibility="7.5.003" expanded="true" height="82" name="Numerical to Polynominal" width="90" x="45" y="34">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value="99|98|97|96|95|94|93|92|91|90|9|89|88|87|86|85|84|83|82|81|80|8|79|78|77|76|75|74|73|72|71|70|7|69|68|67|66|65|64|63|62|61|60|6|59|58|57|56|55|54|53|52|51|50|5|49|48|47|46|45|44|43|42|41|40|4|39|38|37|36|35|34|33|32|31|30|3|29|28|27|26|25|24|23|22|21|20|2|192|191|190|19|189|188|187|186|185|184|183|182|181|180|18|179|178|177|176|175|174|173|172|171|170|17|169|168|167|166|165|164|163|162|161|160|16|159|158|157|156|155|154|153|152|151|150|15|149|148|147|146|145|144|143|142|141|140|14|139|138|137|136|135|134|133|132|131|130|13|129|128|127|126|125|124|123|122|121|120|12|119|118|117|116|115|114|113|112|111|110|11|109|108|107|106|105|104|103|102|101|100|10|1"/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="numeric"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="real"/>
<parameter key="block_type" value="value_series"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_series_end"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="generate_attributes" compatibility="7.5.003" expanded="true" height="82" name="Generate Attributes (3)" width="90" x="179" y="34">
<list key="function_descriptions">
<parameter key="label" value="if([isHeart] == &quot;FALSE&quot;,0,1)"/>
</list>
<parameter key="keep_all" value="true"/>
</operator>
<operator activated="true" class="generate_attributes" compatibility="7.5.003" expanded="true" height="82" name="Generate Attributes (4)" width="90" x="313" y="34">
<list key="function_descriptions">
<parameter key="weight" value="if([label]==0,1,10)"/>
</list>
<parameter key="keep_all" value="true"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.5.003" expanded="true" height="82" name="Set Role (2)" width="90" x="447" y="34">
<parameter key="attribute_name" value="weight"/>
<parameter key="target_role" value="weight"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="numerical_to_binominal" compatibility="7.5.003" expanded="true" height="82" name="Numerical to Binominal" width="90" x="581" y="34">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="label"/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="numeric"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="real"/>
<parameter key="block_type" value="value_series"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_series_end"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="true"/>
<parameter key="min" value="0.0"/>
<parameter key="max" value="0.0"/>
</operator>
<operator activated="true" class="sample_bootstrapping" compatibility="7.5.003" expanded="true" height="82" name="Sample (2)" width="90" x="715" y="34">
<parameter key="sample" value="relative"/>
<parameter key="sample_size" value="100"/>
<parameter key="sample_ratio" value="0.5"/>
<parameter key="use_weights" value="true"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<connect from_port="in 1" to_op="Numerical to Polynominal" to_port="example set input"/>
<connect from_port="in 2" to_op="Generate Attributes (2)" to_port="example set input"/>
<connect from_op="Generate Attributes (2)" from_port="example set output" to_op="Generate Attributes (5)" to_port="example set input"/>
<connect from_op="Generate Attributes (5)" from_port="example set output" to_op="Set Role (3)" to_port="example set input"/>
<connect from_op="Set Role (3)" from_port="example set output" to_op="Numerical to Binominal (2)" to_port="example set input"/>
<connect from_op="Numerical to Binominal (2)" from_port="example set output" to_op="Sample (3)" to_port="example set input"/>
<connect from_op="Sample (3)" from_port="example set output" to_port="out 2"/>
<connect from_op="Numerical to Polynominal" from_port="example set output" to_op="Generate Attributes (3)" to_port="example set input"/>
<connect from_op="Generate Attributes (3)" from_port="example set output" to_op="Generate Attributes (4)" to_port="example set input"/>
<connect from_op="Generate Attributes (4)" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
<connect from_op="Set Role (2)" from_port="example set output" to_op="Numerical to Binominal" to_port="example set input"/>
<connect from_op="Numerical to Binominal" from_port="example set output" to_op="Sample (2)" to_port="example set input"/>
<connect from_op="Sample (2)" from_port="example set output" to_port="out 1"/>
<portSpacing port="source_in 1" spacing="0"/>
<portSpacing port="source_in 2" spacing="0"/>
<portSpacing port="source_in 3" spacing="0"/>
<portSpacing port="sink_out 1" spacing="0"/>
<portSpacing port="sink_out 2" spacing="0"/>
<portSpacing port="sink_out 3" spacing="0"/>
</process>
</operator>
<operator activated="true" class="concurrency:cross_validation" compatibility="7.5.003" expanded="true" height="145" name="Cross Validation" width="90" x="313" y="34">
<parameter key="split_on_batch_attribute" value="false"/>
<parameter key="leave_one_out" value="true"/>
<parameter key="number_of_folds" value="10"/>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="h2o:deep_learning" compatibility="7.5.000" expanded="true" height="82" name="Deep Learning" width="90" x="112" y="34">
<parameter key="activation" value="Rectifier"/>
<enumeration key="hidden_layer_sizes">
<parameter key="hidden_layer_sizes" value="50"/>
<parameter key="hidden_layer_sizes" value="50"/>
<parameter key="hidden_layer_sizes" value="50"/>
<parameter key="hidden_layer_sizes" value="50"/>
<parameter key="hidden_layer_sizes" value="50"/>
</enumeration>
<enumeration key="hidden_dropout_ratios"/>
<parameter key="reproducible_(uses_1_thread)" value="false"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="epochs" value="10.0"/>
<parameter key="compute_variable_importances" value="false"/>
<parameter key="train_samples_per_iteration" value="-2"/>
<parameter key="adaptive_rate" value="true"/>
<parameter key="epsilon" value="1.0E-8"/>
<parameter key="rho" value="0.99"/>
<parameter key="learning_rate" value="0.005"/>
<parameter key="learning_rate_annealing" value="1.0E-6"/>
<parameter key="learning_rate_decay" value="1.0"/>
<parameter key="momentum_start" value="0.0"/>
<parameter key="momentum_ramp" value="1000000.0"/>
<parameter key="momentum_stable" value="0.0"/>
<parameter key="nesterov_accelerated_gradient" value="true"/>
<parameter key="standardize" value="true"/>
<parameter key="L1" value="1.0E-5"/>
<parameter key="L2" value="0.0"/>
<parameter key="max_w2" value="10.0"/>
<parameter key="loss_function" value="Automatic"/>
<parameter key="distribution_function" value="AUTO"/>
<parameter key="early_stopping" value="false"/>
<parameter key="stopping_rounds" value="1"/>
<parameter key="stopping_metric" value="AUTO"/>
<parameter key="stopping_tolerance" value="0.001"/>
<parameter key="missing_values_handling" value="MeanImputation"/>
<parameter key="max_runtime_seconds" value="0"/>
<list key="expert_parameters"/>
<list key="expert_parameters_"/>
</operator>
<connect from_port="training set" to_op="Deep Learning" to_port="training set"/>
<connect from_op="Deep Learning" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="7.5.003" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="7.5.003" expanded="true" height="82" name="Performance (2)" width="90" x="246" y="136">
<parameter key="main_criterion" value="first"/>
<parameter key="accuracy" value="true"/>
<parameter key="classification_error" value="false"/>
<parameter key="kappa" value="false"/>
<parameter key="weighted_mean_recall" value="false"/>
<parameter key="weighted_mean_precision" value="false"/>
<parameter key="spearman_rho" value="false"/>
<parameter key="kendall_tau" value="false"/>
<parameter key="absolute_error" value="false"/>
<parameter key="relative_error" value="false"/>
<parameter key="relative_error_lenient" value="false"/>
<parameter key="relative_error_strict" value="false"/>
<parameter key="normalized_absolute_error" value="false"/>
<parameter key="root_mean_squared_error" value="true"/>
<parameter key="root_relative_squared_error" value="false"/>
<parameter key="squared_error" value="false"/>
<parameter key="correlation" value="false"/>
<parameter key="squared_correlation" value="false"/>
<parameter key="cross-entropy" value="false"/>
<parameter key="margin" value="false"/>
<parameter key="soft_margin_loss" value="false"/>
<parameter key="logistic_loss" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance (2)" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="apply_model" compatibility="7.5.003" expanded="true" height="82" name="Apply Model (2)" width="90" x="447" y="289">
<list key="application_parameters"/>
<parameter key="create_view" value="true"/>
</operator>
<connect from_op="Retrieve Vista_wo_E1" from_port="output" to_op="Set weight" to_port="in 2"/>
<connect from_op="Retrieve Vista_E1" from_port="output" to_op="Set weight" to_port="in 1"/>
<connect from_op="Set weight" from_port="out 1" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Set weight" from_port="out 2" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>

Answers

  • sgenzersgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    hello @jakob_roetner - I'm going to pass this on to others in the team who know the DL operators better than I.  Maybe @jpuente?  

  • jakob_roetnerjakob_roetner Member Posts: 2 Contributor I

    Thank you very much for your effort :) Highly appreciated!

Sign In or Register to comment.