The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

"Threshold for Logistic Regression (Inconsistent behavior)"

earmijoearmijo Member Posts: 271 Unicorn
edited June 2019 in Help

Screen Shot 2017-09-19 at 6.21.11 PM.png

 

For the sake of consistency with other classifiers, I was glad to see this "bug" fixed. However, there is still some weird behavior if the model comes out of a X-validation operator. Take a look at the code below:

 

- When I use the operator directly I get the expected behavior (Observation is classified as Mine when confidence(Mine)>0.5)

 

Screen Shot 2017-09-19 at 7.02.25 PM.png

 

- But when I use it coming out of a X-validation operator something else happens (Observation is classified as Mine when confidence(Mine)>0.383)

 

Screen Shot 2017-09-19 at 6.25.32 PM.png

 

Tagged:

Answers

  • earmijoearmijo Member Posts: 271 Unicorn

    Forgot to include the code:

     

    <?xml version="1.0" encoding="UTF-8"?><process version="7.6.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="7.6.001" expanded="true" height="68" name="Retrieve Sonar" width="90" x="45" y="136">
    <parameter key="repository_entry" value="//Samples/data/Sonar"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="7.6.001" expanded="true" height="82" name="Select Attributes" width="90" x="179" y="136">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="attribute_1"/>
    </operator>
    <operator activated="true" class="multiply" compatibility="7.6.001" expanded="true" height="103" name="Multiply" width="90" x="313" y="136"/>
    <operator activated="true" class="h2o:logistic_regression" compatibility="7.6.001" expanded="true" height="124" name="Logistic Regression (2)" width="90" x="447" y="340"/>
    <operator activated="true" class="apply_model" compatibility="7.6.001" expanded="true" height="82" name="Apply Model (3)" width="90" x="618" y="289">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="7.6.001" expanded="true" height="145" name="Cross Validation" width="90" x="447" y="34">
    <parameter key="use_local_random_seed" value="true"/>
    <process expanded="true">
    <operator activated="true" class="h2o:logistic_regression" compatibility="7.5.000" expanded="true" height="124" name="Logistic Regression" width="90" x="179" y="34"/>
    <connect from_port="training set" to_op="Logistic Regression" to_port="training set"/>
    <connect from_op="Logistic Regression" from_port="model" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_binominal_classification" compatibility="7.6.001" expanded="true" height="82" name="Performance" width="90" x="246" y="30">
    <parameter key="kappa" value="true"/>
    <parameter key="AUC" value="true"/>
    </operator>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="apply_model" compatibility="7.6.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="581" y="34">
    <list key="application_parameters"/>
    </operator>
    <connect from_op="Retrieve Sonar" from_port="output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Multiply" to_port="input"/>
    <connect from_op="Multiply" from_port="output 1" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Multiply" from_port="output 2" to_op="Logistic Regression (2)" to_port="training set"/>
    <connect from_op="Logistic Regression (2)" from_port="model" to_op="Apply Model (3)" to_port="model"/>
    <connect from_op="Logistic Regression (2)" from_port="exampleSet" to_op="Apply Model (3)" to_port="unlabelled data"/>
    <connect from_op="Apply Model (3)" from_port="labelled data" to_port="result 2"/>
    <connect from_op="Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
    <connect from_op="Cross Validation" from_port="example set" to_op="Apply Model (2)" to_port="unlabelled data"/>
    <connect from_op="Apply Model (2)" from_port="labelled data" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    </process>
    </operator>
    </process>
Sign In or Register to comment.