The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Downsampling Test Data within Cross Validation

cekirschcekirsch Member Posts: 2 Contributor I
edited November 2018 in Help

Dear RapidMiner community,

 

my friends and I are currently working on a Data Mining project using the RapidMiner Studio, where we attempt to distinguish Twitter bots from genuine users. We have obtained an unbalanced dataset, in which we have 1000 spambots and 1548 real users. We want to compare several classification methods, such as k-NN, Naive Bayes, etc. using a 10-fold Cross-Validation. To give you an overview over the current problem: To train our model on a balanced training set, we generated one as such using upsampling of the minority class, namely the bots, in the training part of the Cross-Validation process. As our objective is however, to test our model on a real-world setting where we assume that there are approximately 90% of genuine users compared to 10% of spambots on Twitter, we want to downsample to a dataset that represents these properties in the testing part of the respective process.

 

Considering our 1548 genuine user as a baseline, to achieve such a 90:10 sample, we would have 1548 genuine users and 172 bots in an overall sample, which we then divided by 10 (due to 10 folds of the validation) for testing. However, we noticed that it was also possible to enter larger amount of users than we actually should have available for testing, which we believe would mean that we test on data that the model was trained on. We want to avoid this error and therefore would kindly ask for help in answering the following question: Does placing a sampling operator in the test part of a Cross-Validation lead to an overlap of training and test data?

 

You can find our current current proccess on the examplary case of a k-NN classification below in the XML-version as well as an rmp-file.

 

We kindly thank you in advance and send our best regards!

 

<?xml version="1.0" encoding="UTF-8"?><process version="7.6.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.6.001" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.6.001" expanded="true" height="68" name="Retrieve BitteEinBot_final" width="90" x="45" y="34">
<parameter key="repository_entry" value="../../../data/BitteEinBot_final"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.6.001" expanded="true" height="82" name="Set Role" width="90" x="112" y="136">
<parameter key="attribute_name" value="isBot"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="7.6.001" expanded="true" height="82" name="Select Attributes" width="90" x="246" y="187">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value="isBot|dist.url.share|hash.share.same|interval.var|tweets.hash.avg|tweets.mention.avg|tweets.mention.inTweet|tweets.perDay|tweets.replyRatio|tweets.share.HashInTweet|tweets.share.fast|tweets.share.web|tweets.share.withURL|user.URL.dup|user.fofo|user.followRate|user.hasPic|user.hasURL|user.name.buzz|user.name.dist|user.name.dup|user.nbrSources|user.rep|user.url.buzz|tweets.day|tweets.dist.url|tweets.evening|tweets.fast|tweets.hash.most|tweets.morning|tweets.night|tweets.replies|tweets.rt|tweets.total|tweets.withHash|tweets.withMention|tweets.withURL|user.followers|user.following|user.lifetweets|tweets.url.api|tweets.share.rt|tweets.share.api"/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="nominal_to_numerical" compatibility="7.6.001" expanded="true" height="103" name="Nominal to Numerical" width="90" x="313" y="34">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="all"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value="isBot|user.hasPic|user.hasURL|user.name.buzz|user.url.buzz|tweets.url.api|tweets.share.web|tweets.share.api|user.name.dup|user.URL.dup"/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="nominal"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="file_path"/>
<parameter key="block_type" value="single_value"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="single_value"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="coding_type" value="dummy coding"/>
<parameter key="use_comparison_groups" value="false"/>
<list key="comparison_groups"/>
<parameter key="unexpected_value_handling" value="all 0 and warning"/>
<parameter key="use_underscore_in_name" value="false"/>
</operator>
<operator activated="true" class="concurrency:cross_validation" compatibility="7.6.001" expanded="true" height="145" name="Cross Validation" width="90" x="514" y="34">
<parameter key="split_on_batch_attribute" value="false"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_folds" value="10"/>
<parameter key="sampling_type" value="stratified sampling"/>
<parameter key="use_local_random_seed" value="true"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="normalize" compatibility="7.6.001" expanded="true" height="103" name="Normalize (2)" width="90" x="45" y="289">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="all"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="numeric"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="real"/>
<parameter key="block_type" value="value_series"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_series_end"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="method" value="Z-transformation"/>
<parameter key="min" value="0.0"/>
<parameter key="max" value="1.0"/>
<parameter key="allow_negative_values" value="false"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="7.6.001" expanded="true" height="103" name="Filter Examples" width="90" x="45" y="34">
<parameter key="parameter_expression" value=""/>
<parameter key="condition_class" value="custom_filters"/>
<parameter key="invert_filter" value="false"/>
<list key="filters_list">
<parameter key="filters_entry_key" value="isBot.equals.1"/>
</list>
<parameter key="filters_logic_and" value="true"/>
<parameter key="filters_check_metadata" value="true"/>
</operator>
<operator activated="true" class="multiply" compatibility="7.6.001" expanded="true" height="103" name="Multiply" width="90" x="179" y="34"/>
<operator activated="true" class="sample" compatibility="7.6.001" expanded="true" height="82" name="Sample (2)" width="90" x="313" y="34">
<parameter key="sample" value="absolute"/>
<parameter key="balance_data" value="true"/>
<parameter key="sample_size" value="100"/>
<parameter key="sample_ratio" value="0.1"/>
<parameter key="sample_probability" value="0.1"/>
<list key="sample_size_per_class">
<parameter key="1" value="450"/>
</list>
<list key="sample_ratio_per_class"/>
<list key="sample_probability_per_class"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="append" compatibility="7.6.001" expanded="true" height="124" name="Append" width="90" x="447" y="136">
<parameter key="datamanagement" value="double_array"/>
<parameter key="data_management" value="auto"/>
<parameter key="merge_type" value="all"/>
</operator>
<operator activated="true" class="remap_binominals" compatibility="7.6.001" expanded="true" height="82" name="Remap Binominals" width="90" x="581" y="187">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="isBot"/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="binominal"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="binominal"/>
<parameter key="block_type" value="value_matrix_start"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="true"/>
<parameter key="negative_value" value="0"/>
<parameter key="positive_value" value="1"/>
</operator>
<operator activated="true" class="k_nn" compatibility="7.6.001" expanded="true" height="82" name="k-NN" width="90" x="581" y="34">
<parameter key="k" value="8"/>
<parameter key="weighted_vote" value="true"/>
<parameter key="measure_types" value="NumericalMeasures"/>
<parameter key="mixed_measure" value="MixedEuclideanDistance"/>
<parameter key="nominal_measure" value="NominalDistance"/>
<parameter key="numerical_measure" value="EuclideanDistance"/>
<parameter key="divergence" value="GeneralizedIDivergence"/>
<parameter key="kernel_type" value="radial"/>
<parameter key="kernel_gamma" value="1.0"/>
<parameter key="kernel_sigma1" value="1.0"/>
<parameter key="kernel_sigma2" value="0.0"/>
<parameter key="kernel_sigma3" value="2.0"/>
<parameter key="kernel_degree" value="3.0"/>
<parameter key="kernel_shift" value="1.0"/>
<parameter key="kernel_a" value="1.0"/>
<parameter key="kernel_b" value="0.0"/>
</operator>
<connect from_port="training set" to_op="Normalize (2)" to_port="example set input"/>
<connect from_op="Normalize (2)" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Normalize (2)" from_port="preprocessing model" to_port="through 1"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Multiply" to_port="input"/>
<connect from_op="Filter Examples" from_port="unmatched example set" to_op="Append" to_port="example set 2"/>
<connect from_op="Multiply" from_port="output 1" to_op="Sample (2)" to_port="example set input"/>
<connect from_op="Multiply" from_port="output 2" to_op="Append" to_port="example set 3"/>
<connect from_op="Sample (2)" from_port="example set output" to_op="Append" to_port="example set 1"/>
<connect from_op="Append" from_port="merged set" to_op="Remap Binominals" to_port="example set input"/>
<connect from_op="Remap Binominals" from_port="example set output" to_op="k-NN" to_port="training set"/>
<connect from_op="k-NN" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
<portSpacing port="sink_through 2" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="sample" compatibility="7.6.001" expanded="true" height="82" name="Sample" width="90" x="45" y="187">
<parameter key="sample" value="absolute"/>
<parameter key="balance_data" value="true"/>
<parameter key="sample_size" value="100"/>
<parameter key="sample_ratio" value="0.1"/>
<parameter key="sample_probability" value="0.1"/>
<list key="sample_size_per_class">
<parameter key="0" value="155"/>
<parameter key="1" value="17"/>
</list>
<list key="sample_ratio_per_class">
<parameter key="0" value="0.9"/>
<parameter key="1" value="0.1"/>
</list>
<list key="sample_probability_per_class"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="apply_model" compatibility="7.6.001" expanded="true" height="82" name="Apply Preprocessing" width="90" x="179" y="136">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="apply_model" compatibility="7.6.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance_binominal_classification" compatibility="7.6.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
<parameter key="main_criterion" value="first"/>
<parameter key="accuracy" value="false"/>
<parameter key="classification_error" value="false"/>
<parameter key="kappa" value="false"/>
<parameter key="AUC (optimistic)" value="true"/>
<parameter key="AUC" value="true"/>
<parameter key="AUC (pessimistic)" value="true"/>
<parameter key="precision" value="false"/>
<parameter key="recall" value="false"/>
<parameter key="lift" value="false"/>
<parameter key="fallout" value="false"/>
<parameter key="f_measure" value="true"/>
<parameter key="false_positive" value="true"/>
<parameter key="false_negative" value="true"/>
<parameter key="true_positive" value="true"/>
<parameter key="true_negative" value="true"/>
<parameter key="sensitivity" value="false"/>
<parameter key="specificity" value="false"/>
<parameter key="youden" value="false"/>
<parameter key="positive_predictive_value" value="false"/>
<parameter key="negative_predictive_value" value="false"/>
<parameter key="psep" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Sample" to_port="example set input"/>
<connect from_port="through 1" to_op="Apply Preprocessing" to_port="model"/>
<connect from_op="Sample" from_port="example set output" to_op="Apply Preprocessing" to_port="unlabelled data"/>
<connect from_op="Apply Preprocessing" from_port="labelled data" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="source_through 2" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve BitteEinBot_final" from_port="output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
<connect from_op="Nominal to Numerical" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
<connect from_op="Cross Validation" from_port="example set" to_port="result 2"/>
<connect from_op="Cross Validation" from_port="performance 1" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
</process>

 

Answers

  • JEdwardJEdward RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 578 Unicorn

    The test portion of the result has already been split with each fold so you won't get records from training in testing.  However, your 10:1 ratios might get messed up if the sample is small as it means you'd sample to 100% (max) of one class and a varying fraction of the other class. 

    Here's a quick rejig of your process with a reworking of your filter to balance the classes in the training set using the Extract Macro operator.  It should save you having to manually calculate numbers for each fold and give you some ideas on how to calculate your G Ratio. 

     

    <?xml version="1.0" encoding="UTF-8"?><process version="7.6.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="7.6.001" expanded="true" name="Process">
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="7.6.001" expanded="true" height="68" name="Retrieve BitteEinBot_final" width="90" x="45" y="34">
    <parameter key="repository_entry" value="../../../data/BitteEinBot_final"/>
    </operator>
    <operator activated="true" class="set_role" compatibility="7.6.001" expanded="true" height="82" name="Set Role" width="90" x="179" y="34">
    <parameter key="attribute_name" value="isBot"/>
    <parameter key="target_role" value="label"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="7.6.001" expanded="true" height="82" name="Select Attributes" width="90" x="313" y="34">
    <parameter key="attribute_filter_type" value="subset"/>
    <parameter key="attributes" value="isBot|dist.url.share|hash.share.same|interval.var|tweets.hash.avg|tweets.mention.avg|tweets.mention.inTweet|tweets.perDay|tweets.replyRatio|tweets.share.HashInTweet|tweets.share.fast|tweets.share.web|tweets.share.withURL|user.URL.dup|user.fofo|user.followRate|user.hasPic|user.hasURL|user.name.buzz|user.name.dist|user.name.dup|user.nbrSources|user.rep|user.url.buzz|tweets.day|tweets.dist.url|tweets.evening|tweets.fast|tweets.hash.most|tweets.morning|tweets.night|tweets.replies|tweets.rt|tweets.total|tweets.withHash|tweets.withMention|tweets.withURL|user.followers|user.following|user.lifetweets|tweets.url.api|tweets.share.rt|tweets.share.api"/>
    </operator>
    <operator activated="true" class="nominal_to_numerical" compatibility="7.6.001" expanded="true" height="103" name="Nominal to Numerical" width="90" x="447" y="34">
    <parameter key="attributes" value="isBot|user.hasPic|user.hasURL|user.name.buzz|user.url.buzz|tweets.url.api|tweets.share.web|tweets.share.api|user.name.dup|user.URL.dup"/>
    <list key="comparison_groups"/>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="7.6.001" expanded="true" height="145" name="Cross Validation" width="90" x="581" y="34">
    <parameter key="sampling_type" value="stratified sampling"/>
    <parameter key="use_local_random_seed" value="true"/>
    <process expanded="true">
    <operator activated="true" class="normalize" compatibility="7.6.001" expanded="true" height="103" name="Normalize (2)" width="90" x="45" y="187"/>
    <operator activated="true" class="extract_macro" compatibility="7.6.001" expanded="true" height="68" name="Extract Macro" width="90" x="179" y="34">
    <parameter key="macro" value="isBotClass"/>
    <parameter key="macro_type" value="statistics"/>
    <parameter key="statistics" value="count"/>
    <parameter key="attribute_name" value="isBot"/>
    <parameter key="attribute_value" value="1"/>
    <list key="additional_macros"/>
    </operator>
    <operator activated="true" class="sample" compatibility="7.6.001" expanded="true" height="82" name="Sample (2)" width="90" x="313" y="34">
    <parameter key="balance_data" value="true"/>
    <list key="sample_size_per_class">
    <parameter key="1" value="%{isBotClass}"/>
    <parameter key="0" value="%{isBotClass}"/>
    </list>
    <list key="sample_ratio_per_class"/>
    <list key="sample_probability_per_class"/>
    </operator>
    <operator activated="true" class="remap_binominals" compatibility="7.6.001" expanded="true" height="82" name="Remap Binominals" width="90" x="447" y="34">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="isBot"/>
    <parameter key="include_special_attributes" value="true"/>
    <parameter key="negative_value" value="0"/>
    <parameter key="positive_value" value="1"/>
    </operator>
    <operator activated="true" class="k_nn" compatibility="7.6.001" expanded="true" height="82" name="k-NN" width="90" x="581" y="34">
    <parameter key="k" value="8"/>
    <parameter key="weighted_vote" value="true"/>
    <parameter key="measure_types" value="NumericalMeasures"/>
    </operator>
    <operator activated="true" class="group_models" compatibility="7.6.001" expanded="true" height="103" name="Group Models" width="90" x="581" y="187">
    <description align="center" color="transparent" colored="false" width="126">I just like using GroupModels for neatness.</description>
    </operator>
    <connect from_port="training set" to_op="Normalize (2)" to_port="example set input"/>
    <connect from_op="Normalize (2)" from_port="example set output" to_op="Extract Macro" to_port="example set"/>
    <connect from_op="Normalize (2)" from_port="preprocessing model" to_op="Group Models" to_port="models in 1"/>
    <connect from_op="Extract Macro" from_port="example set" to_op="Sample (2)" to_port="example set input"/>
    <connect from_op="Sample (2)" from_port="example set output" to_op="Remap Binominals" to_port="example set input"/>
    <connect from_op="Remap Binominals" from_port="example set output" to_op="k-NN" to_port="training set"/>
    <connect from_op="k-NN" from_port="model" to_op="Group Models" to_port="models in 2"/>
    <connect from_op="Group Models" from_port="model out" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="168"/>
    <portSpacing port="sink_through 2" spacing="21"/>
    <description align="center" color="yellow" colored="false" height="93" resized="true" width="293" x="183" y="141">Here we extract a count of the number of isBot == 1 records are in this fold of the training set and sample the training data so that the classes are balanced.</description>
    </process>
    <process expanded="true">
    <operator activated="false" class="sample" compatibility="7.6.001" expanded="true" height="82" name="Sample" width="90" x="45" y="238">
    <parameter key="sample" value="relative"/>
    <parameter key="balance_data" value="true"/>
    <list key="sample_size_per_class">
    <parameter key="0" value="155"/>
    <parameter key="1" value="17"/>
    </list>
    <list key="sample_ratio_per_class">
    <parameter key="0" value="0.9"/>
    <parameter key="1" value="0.1"/>
    </list>
    <list key="sample_probability_per_class"/>
    </operator>
    <operator activated="true" class="apply_model" compatibility="7.6.001" expanded="true" height="82" name="Apply Prepr &amp; Model" width="90" x="112" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_binominal_classification" compatibility="7.6.001" expanded="true" height="82" name="Performance" width="90" x="313" y="34">
    <parameter key="accuracy" value="false"/>
    <parameter key="AUC (optimistic)" value="true"/>
    <parameter key="AUC" value="true"/>
    <parameter key="AUC (pessimistic)" value="true"/>
    <parameter key="f_measure" value="true"/>
    <parameter key="false_positive" value="true"/>
    <parameter key="false_negative" value="true"/>
    <parameter key="true_positive" value="true"/>
    <parameter key="true_negative" value="true"/>
    </operator>
    <connect from_port="model" to_op="Apply Prepr &amp; Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Prepr &amp; Model" to_port="unlabelled data"/>
    <connect from_op="Apply Prepr &amp; Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="147"/>
    <portSpacing port="source_through 2" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    <description align="center" color="yellow" colored="false" height="135" resized="true" width="331" x="150" y="232">This sample hasn't been used because I assume that the original training data is set to balance the classes. However the ratio used should be fine if you want to include it and assuming that the input classes are balanced.</description>
    </process>
    </operator>
    <connect from_op="Retrieve BitteEinBot_final" from_port="output" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
    <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
    <connect from_op="Cross Validation" from_port="example set" to_port="result 2"/>
    <connect from_op="Cross Validation" from_port="performance 1" to_port="result 3"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    <description align="center" color="yellow" colored="false" height="92" resized="true" width="279" x="476" y="206">You are using stratified sampling so this should match the sample of your original data. Is the original training data already balanced?</description>
    </process>
    </operator>
    </process>

    Hope that helps.

     

  • cekirschcekirsch Member Posts: 2 Contributor I

    Hi @JEdward,

     

    thank you so much for the quick reply. The input really helped us and got us to rethink our model. We are, however, still unsure whether we correctly stated the issue at hand and whether we are on the right track. To maybe give a better overview over our data and our objectives, I briefly summarized some important things:

     

    Original (unbalanced) Dataset:

    • 1548 genuine users
    • 1000 bots

    Cross-Validation Process:

    • Training:
      • balance dataset by up-sampling the minorty class (bots) to be the same amount as the majority class (genuine users) 
      • >>>here the program would need to create duplicates of the bot minority class<<<
    • Test:
      • downsample the dataset to represent an unbalanced sample with 90% genuine users and 10% bots to resemble the real-world setting on Twitter

    Suspected Problem:

    • Is it feasible to actually upsample to balanced data in the training (9 out the 10 sets generated by 10-fold Cross Validation), while then generating a unbalanced test set (1 out of the 10 sets generated by 10-fold Cross Validation) using a Sample operator to downsample again?
    • >>>We suspected that it might be an issue as the process would resort to taking data points into the test sample that were already used for training.<<<

    Sorry for any unclarities in the first post, I think it came across as if we wanted to balance the data in the test part of the cross-validation.

     

    Best and thanks so much again.

     

  • JEdwardJEdward RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 578 Unicorn

    Untested & it's just gone midnight here so apologies if this has errors.  Something like this with the bootstrap sampling operator might be what you're after?

     

     

    <?xml version="1.0" encoding="UTF-8"?><process version="7.6.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="7.6.001" expanded="true" name="Process">
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="7.6.001" expanded="true" height="68" name="Retrieve BitteEinBot_final" width="90" x="45" y="34">
    <parameter key="repository_entry" value="../../../data/BitteEinBot_final"/>
    </operator>
    <operator activated="true" class="set_role" compatibility="7.6.001" expanded="true" height="82" name="Set Role" width="90" x="179" y="34">
    <parameter key="attribute_name" value="isBot"/>
    <parameter key="target_role" value="label"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="7.6.001" expanded="true" height="82" name="Select Attributes" width="90" x="313" y="34">
    <parameter key="attribute_filter_type" value="subset"/>
    <parameter key="attributes" value="isBot|dist.url.share|hash.share.same|interval.var|tweets.hash.avg|tweets.mention.avg|tweets.mention.inTweet|tweets.perDay|tweets.replyRatio|tweets.share.HashInTweet|tweets.share.fast|tweets.share.web|tweets.share.withURL|user.URL.dup|user.fofo|user.followRate|user.hasPic|user.hasURL|user.name.buzz|user.name.dist|user.name.dup|user.nbrSources|user.rep|user.url.buzz|tweets.day|tweets.dist.url|tweets.evening|tweets.fast|tweets.hash.most|tweets.morning|tweets.night|tweets.replies|tweets.rt|tweets.total|tweets.withHash|tweets.withMention|tweets.withURL|user.followers|user.following|user.lifetweets|tweets.url.api|tweets.share.rt|tweets.share.api"/>
    </operator>
    <operator activated="true" class="nominal_to_numerical" compatibility="7.6.001" expanded="true" height="103" name="Nominal to Numerical" width="90" x="447" y="34">
    <parameter key="attributes" value="isBot|user.hasPic|user.hasURL|user.name.buzz|user.url.buzz|tweets.url.api|tweets.share.web|tweets.share.api|user.name.dup|user.URL.dup"/>
    <list key="comparison_groups"/>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="7.6.001" expanded="true" height="145" name="Cross Validation" width="90" x="581" y="34">
    <parameter key="sampling_type" value="stratified sampling"/>
    <parameter key="use_local_random_seed" value="true"/>
    <process expanded="true">
    <operator activated="true" class="normalize" compatibility="7.6.001" expanded="true" height="103" name="Normalize (2)" width="90" x="45" y="187"/>
    <operator activated="true" class="extract_macro" compatibility="7.6.001" expanded="true" height="68" name="Extract Macro" width="90" x="45" y="34">
    <parameter key="macro" value="isBotClass"/>
    <parameter key="macro_type" value="statistics"/>
    <parameter key="statistics" value="count"/>
    <parameter key="attribute_name" value="isBot"/>
    <parameter key="attribute_value" value="0"/>
    <list key="additional_macros"/>
    </operator>
    <operator activated="true" class="subprocess" compatibility="7.6.001" expanded="true" height="82" name="Filtering and Sampling" width="90" x="179" y="34">
    <process expanded="true">
    <operator activated="true" class="filter_examples" compatibility="7.6.001" expanded="true" height="103" name="Filter Examples" width="90" x="45" y="34">
    <list key="filters_list">
    <parameter key="filters_entry_key" value="isBot.eq.1"/>
    </list>
    </operator>
    <operator activated="true" class="sample_bootstrapping" compatibility="7.6.001" expanded="true" height="82" name="Sample (Bootstrapping)" width="90" x="179" y="34">
    <parameter key="sample" value="absolute"/>
    <parameter key="sample_size" value="%{isBotClass}"/>
    </operator>
    <operator activated="true" class="append" compatibility="7.6.001" expanded="true" height="103" name="Append" width="90" x="246" y="136"/>
    <operator activated="true" class="remap_binominals" compatibility="7.6.001" expanded="true" height="82" name="Remap Binominals" width="90" x="380" y="136">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="isBot"/>
    <parameter key="include_special_attributes" value="true"/>
    <parameter key="negative_value" value="0"/>
    <parameter key="positive_value" value="1"/>
    </operator>
    <connect from_port="in 1" to_op="Filter Examples" to_port="example set input"/>
    <connect from_op="Filter Examples" from_port="example set output" to_op="Sample (Bootstrapping)" to_port="example set input"/>
    <connect from_op="Filter Examples" from_port="unmatched example set" to_op="Append" to_port="example set 2"/>
    <connect from_op="Sample (Bootstrapping)" from_port="example set output" to_op="Append" to_port="example set 1"/>
    <connect from_op="Append" from_port="merged set" to_op="Remap Binominals" to_port="example set input"/>
    <connect from_op="Remap Binominals" from_port="example set output" to_port="out 1"/>
    <portSpacing port="source_in 1" spacing="0"/>
    <portSpacing port="source_in 2" spacing="0"/>
    <portSpacing port="sink_out 1" spacing="0"/>
    <portSpacing port="sink_out 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="k_nn" compatibility="7.6.001" expanded="true" height="82" name="k-NN" width="90" x="313" y="34">
    <parameter key="k" value="8"/>
    <parameter key="weighted_vote" value="true"/>
    <parameter key="measure_types" value="NumericalMeasures"/>
    </operator>
    <operator activated="true" class="group_models" compatibility="7.6.001" expanded="true" height="103" name="Group Models" width="90" x="380" y="136">
    <description align="center" color="transparent" colored="false" width="126">I just like using GroupModels for neatness.</description>
    </operator>
    <connect from_port="training set" to_op="Normalize (2)" to_port="example set input"/>
    <connect from_op="Normalize (2)" from_port="example set output" to_op="Extract Macro" to_port="example set"/>
    <connect from_op="Normalize (2)" from_port="preprocessing model" to_op="Group Models" to_port="models in 1"/>
    <connect from_op="Extract Macro" from_port="example set" to_op="Filtering and Sampling" to_port="in 1"/>
    <connect from_op="Filtering and Sampling" from_port="out 1" to_op="k-NN" to_port="training set"/>
    <connect from_op="k-NN" from_port="model" to_op="Group Models" to_port="models in 2"/>
    <connect from_op="Group Models" from_port="model out" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="168"/>
    <description align="center" color="yellow" colored="false" height="93" resized="true" width="293" x="141" y="377">Here we extract a count of the number of isBot == 1 records are in this fold of the training set and sample the training data so that the classes are balanced.</description>
    </process>
    <process expanded="true">
    <operator activated="true" class="sample" compatibility="7.6.001" expanded="true" height="82" name="Sample" width="90" x="45" y="238">
    <parameter key="sample" value="relative"/>
    <parameter key="balance_data" value="true"/>
    <list key="sample_size_per_class">
    <parameter key="0" value="155"/>
    <parameter key="1" value="17"/>
    </list>
    <list key="sample_ratio_per_class">
    <parameter key="0" value="0.9"/>
    <parameter key="1" value="0.1"/>
    </list>
    <list key="sample_probability_per_class"/>
    </operator>
    <operator activated="true" class="apply_model" compatibility="7.6.001" expanded="true" height="82" name="Apply Prepr &amp; Model" width="90" x="112" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_binominal_classification" compatibility="7.6.001" expanded="true" height="82" name="Performance" width="90" x="313" y="34">
    <parameter key="accuracy" value="false"/>
    <parameter key="AUC (optimistic)" value="true"/>
    <parameter key="AUC" value="true"/>
    <parameter key="AUC (pessimistic)" value="true"/>
    <parameter key="f_measure" value="true"/>
    <parameter key="false_positive" value="true"/>
    <parameter key="false_negative" value="true"/>
    <parameter key="true_positive" value="true"/>
    <parameter key="true_negative" value="true"/>
    </operator>
    <connect from_port="model" to_op="Apply Prepr &amp; Model" to_port="model"/>
    <connect from_port="test set" to_op="Sample" to_port="example set input"/>
    <connect from_op="Sample" from_port="example set output" to_op="Apply Prepr &amp; Model" to_port="unlabelled data"/>
    <connect from_op="Apply Prepr &amp; Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="147"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    <description align="center" color="yellow" colored="false" height="135" resized="true" width="331" x="150" y="232">This sample hasn't been used because I assume that the original training data is set to balance the classes. However the ratio used should be fine if you want to include it and assuming that the input classes are balanced.</description>
    </process>
    </operator>
    <connect from_op="Retrieve BitteEinBot_final" from_port="output" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
    <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
    <connect from_op="Cross Validation" from_port="example set" to_port="result 2"/>
    <connect from_op="Cross Validation" from_port="performance 1" to_port="result 3"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    <description align="center" color="yellow" colored="false" height="92" resized="true" width="279" x="476" y="206">You are using stratified sampling so this should match the sample of your original data. Is the original training data already balanced?</description>
    </process>
    </operator>
    </process>
  • Thomas_OttThomas_Ott RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,761 Unicorn

    I'm not a fan of downsampling. Why not do weighting or try the new SMOTE operator?

Sign In or Register to comment.