The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

split results into bins for evaluation

bobdobbsbobdobbs Member Posts: 26 Maven
edited June 2019 in Help
Hi,

Another fun puzzle for the RM team.  :)

I've run a model that outputs confidence values for an SVM class.  The values range from 0 to 1 (as expected for this type of model.)

One very common method of evaluation I've seen in papers is to break the results into "bins" or "groups" by confidence range and then report the accuracy of each range.

Something like
Range# predicted# correct% correct
60-65352160
55-601307557.6
Any way to this sort of analysis in RM??

Thanks!
Tagged:

Answers

  • steffensteffen Member Posts: 347 Maven
    Hello bobdobbs

    I do not have the time to create a perfect fully tested process, but this non-executable process should give you an idea:

    <operator name="Root" class="Process" expanded="yes">
        <operator name="yourdata" class="ExampleSource">
        </operator>
        <operator name="select_confidence_attribute" class="AttributeSubsetPreprocessing" expanded="yes">
            <parameter key="condition_class" value="attribute_name_filter"/>
            <parameter key="attribute_name_regex" value="your-confidence-column"/>
            <operator name="define_confidence_discretization_here" class="UserBasedDiscretization">
                <list key="classes">
                  <parameter key="last" value="Infinity"/>
                </list>
            </operator>
        </operator>
        <operator name="iterate_over_discretized_confidence_attribute" class="ValueSubgroupIterator" expanded="yes">
            <list key="attributes">
              <parameter key="discretized_confidence" value="all"/>
            </list>
            <operator name="your-measure" class="BinominalClassificationPerformance">
                <parameter key="false_positive" value="true"/>
                <parameter key="true_positive" value="true"/>
                <parameter key="positive_predictive_value" value="true"/>
            </operator>
            <operator name="Macro2Log" class="Macro2Log">
                <parameter key="macro_name" value="loop_value"/>
            </operator>
            <operator name="ProcessLog" class="ProcessLog">
                <list key="log">
                  <parameter key="value" value="operator.Macro2Log.value.macro_value"/>
                  <parameter key="performance" value="operator.your-measure.value.positive_predictive_value"/>
                </list>
            </operator>
        </operator>
    </operator>
    I hope you can make it from here.

    regards,

    Steffen
  • IngoRMIngoRM Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Community Manager, RMResearcher, Member, University Professor Posts: 1,751 RM Founder
    Just a small note: beside calculating this yourself as indicated by Steffen, the lift chart operators might be also interesting to you.

    Cheers,
    Ingo
  • bobdobbsbobdobbs Member Posts: 26 Maven
    Thanks Stefan!!!

    That's a great way to solve this problem.

    I'm getting good predictions, but the confidence "score" seems out of alignment.  For example, my 90%-100% confidence level is true about 70%.  My 80-90% is true about 60%, etc.  So, I guess the model is good, but the scores are just "scores" and not reliable probability.

    Thanks!!!!!

    -B
  • steffensteffen Member Posts: 347 Maven
    Hello bobdobbs

    Nice to hear. As a quick idea, you could use the operator Platt Scaling to calibrate the scores i.e.  to make them a better approximation to the true probabilties.

    kind regards,

    Steffen

  • bobdobbsbobdobbs Member Posts: 26 Maven
    Stefan,

    A great idea as usual!

    Question:  Where in the process would I put the platt operator.  Do I do it after training? or testing?  or both?

    Thnaks!
  • steffensteffen Member Posts: 347 Maven
    Hello again ... weekend break is over ...

    I suggest something like the process below. Additional remark: The XVPrediction is used to train a separate basis of confidences to prevent overfitting as suggested in platt's original paper.

    <operator name="Root" class="Process" expanded="yes">
        <operator name="generate_set" class="OperatorChain" expanded="no">
            <operator name="ExampleSetGenerator" class="ExampleSetGenerator">
                <parameter key="target_function" value="random"/>
            </operator>
            <operator name="IdTagging" class="IdTagging">
            </operator>
            <operator name="FeatureNameFilter" class="FeatureNameFilter">
                <parameter key="filter_special_features" value="true"/>
                <parameter key="skip_features_with_name" value="label"/>
            </operator>
            <operator name="NominalExampleSetGenerator" class="NominalExampleSetGenerator">
                <parameter key="number_of_attributes" value="1"/>
                <parameter key="number_of_values" value="2"/>
            </operator>
            <operator name="FeatureNameFilter (2)" class="FeatureNameFilter">
                <parameter key="filter_special_features" value="true"/>
                <parameter key="skip_features_with_name" value="att1"/>
            </operator>
            <operator name="IdTagging (2)" class="IdTagging">
            </operator>
            <operator name="ExampleSetJoin" class="ExampleSetJoin">
            </operator>
        </operator>
        <operator name="XVal" class="XValidation" expanded="no">
            <parameter key="sampling_type" value="shuffled sampling"/>
            <operator name="training" class="OperatorChain" expanded="yes">
                <operator name="Training" class="LibSVMLearner">
                    <parameter key="keep_example_set" value="true"/>
                    <parameter key="kernel_type" value="poly"/>
                    <parameter key="C" value="1000.0"/>
                    <list key="class_weights">
                    </list>
                </operator>
                <operator name="train_platt_model" class="XVPrediction" expanded="no">
                    <parameter key="number_of_validations" value="3"/>
                    <operator name="Training (2)" class="LibSVMLearner">
                        <parameter key="keep_example_set" value="true"/>
                        <parameter key="kernel_type" value="poly"/>
                        <parameter key="C" value="1000.0"/>
                        <list key="class_weights">
                        </list>
                    </operator>
                    <operator name="OperatorChain" class="OperatorChain" expanded="yes">
                        <operator name="ModelApplier" class="ModelApplier">
                            <list key="application_parameters">
                            </list>
                        </operator>
                        <operator name="dummy" class="ClassificationPerformance">
                            <parameter key="keep_example_set" value="true"/>
                            <parameter key="accuracy" value="true"/>
                            <list key="class_weights">
                            </list>
                        </operator>
                    </operator>
                </operator>
                <operator name="PlattScaling" class="PlattScaling">
                </operator>
            </operator>
            <operator name="ApplierChain" class="OperatorChain" expanded="yes">
                <operator name="Test" class="ModelApplier">
                    <list key="application_parameters">
                    </list>
                </operator>
                <operator name="ClassificationPerformance" class="ClassificationPerformance">
                    <parameter key="accuracy" value="true"/>
                    <list key="class_weights">
                    </list>
                </operator>
            </operator>
        </operator>
    </operator>
    regards,

    Steffen
  • bobdobbsbobdobbs Member Posts: 26 Maven
    Stefan,

    VERY clever application.  :D

    I don't entirely understand why you train an SVM and then train 3 more svm with platt insie the xvpred??  Does the XVPrediciton somehow deliver the "best" platt from the XV tests?

    Also, does the platt model from within the XVPrediction pass through to the model that we eventually apply?  If so, would it be safe to assume that we could write that model and it would include the Platt as well?
  • steffensteffen Member Posts: 347 Maven
    Ok, I see that we need more remarks:

    Stefan
    I don't entirely understand why you train an SVM and then train 3 more svm with platt insie the xvpred??  Does the XVPrediciton somehow deliver the "best" platt from the XV tests?
    Aaarrgh. My fault. Just remove the operator chain (and hence all its childoperators) named "train_platt_model". What I told you above regarding the prevention of overfitting is correct, but RapidMiner's special implementation of Platt Scaling does not allow this strategy (I noted this issues before see here :  http://rapid-i.com/rapidforum/index.php/topic,447.0.html , but maybe I was to picky).

    Also, does the platt model from within the XVPrediction pass through to the model that we eventually apply?  If so, would it be safe to assume that we could write that model and it would include the Platt as well?
    Platt Scaling combines the classification model and the calibration model into one. Hence writing and reading should cause no problems.

    hope this was helpful,

    regards,

    Steffen

    PS: Sorry, the name is "Steffen", not "Stefan". This is an important difference here in Germany ;)
Sign In or Register to comment.