The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"saved XML output bug"
Hi all,
the XML that is exported out of Rapidminer when you save results is currently invalid because the closing object-stream tag is omitted from the bottom of the file.
Cheers
Stuart
the XML that is exported out of Rapidminer when you save results is currently invalid because the closing object-stream tag is omitted from the bottom of the file.
Cheers
Stuart
Tagged:
0
Answers
Cheers,
Simon
<operator name="Root" class="Process" expanded="yes">
<operator name="Input" class="ExampleSource">
<parameter key="attributes" value="../data/polynomial.aml"/>
</operator>
<operator name="XVal" class="XValidation" expanded="yes">
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="Training" class="LibSVMLearner">
<parameter key="svm_type" value="epsilon-SVR"/>
<parameter key="kernel_type" value="poly"/>
<parameter key="C" value="1000.0"/>
<list key="class_weights">
</list>
</operator>
<operator name="ApplierChain" class="OperatorChain" expanded="yes">
<operator name="Test" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="Evaluation" class="RegressionPerformance">
<parameter key="root_mean_squared_error" value="true"/>
<parameter key="absolute_error" value="true"/>
<parameter key="relative_error" value="true"/>
<parameter key="normalized_absolute_error" value="true"/>
<parameter key="root_relative_squared_error" value="true"/>
<parameter key="squared_error" value="true"/>
<parameter key="correlation" value="true"/>
</operator>
</operator>
</operator>
</operator>
if you save the performance file *.per you get this;
<object-stream>
<PerformanceVector id="1">
<currentValues id="2">
<entry>
<string>root_mean_squared_error</string>
<double>7.271397088254498</double>
</entry>
<entry>
<string>relative_error</string>
<double>0.4261726449515895</double>
</entry>
<entry>
<string>correlation</string>
<double>0.9990774750706919</double>
</entry>
<entry>
<string>normalized_absolute_error</string>
<double>0.04030556352101554</double>
</entry>
<entry>
<string>absolute_error</string>
<double>5.107471175794692</double>
</entry>
<entry>
<string>squared_error</string>
<double>54.826375982674925</double>
</entry>
<entry>
<string>root_relative_squared_error</string>
<double>0.04407058437419177</double>
</entry>
</currentValues>
<comparator class="com.rapidminer.operator.performance.PerformanceVector$DefaultComparator" id="3"/>
<mainCriterion>first</mainCriterion>
<averagesList id="4">
<root__mean__squared__error id="5">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" id="6">
<attributeDescription id="7">
<name>prediction(label)</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>6</index>
</attributeDescription>
<transformations id="8"/>
<statistics class="linked-list" id="9">
<NumericalStatistics id="10">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="11">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="12">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="13">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>prediction(label)</constructionDescription>
</predictedAttribute>
<labelAttribute class="NumericalAttribute" id="14">
<attributeDescription id="15">
<name>label</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>5</index>
</attributeDescription>
<transformations id="16"/>
<statistics class="linked-list" id="17">
<NumericalStatistics id="18">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="19">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="20">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="21">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>label</constructionDescription>
</labelAttribute>
<meanSum>72.71397088254498</meanSum>
<meanSquaredSum>548.2637598267493</meanSquaredSum>
<averageCount>10</averageCount>
</root__mean__squared__error>
<absolute__error id="22">
<sum>1021.4942351589382</sum>
<squaresSum>10965.275196534985</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>51.07471175794692</meanSum>
<meanSquaredSum>269.8618246507336</meanSquaredSum>
<averageCount>10</averageCount>
</absolute__error>
<relative__error id="23">
<sum>85.2345289903179</sum>
<squaresSum>1012.762540663155</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>4.261726449515895</meanSum>
<meanSquaredSum>3.142985588188072</meanSquaredSum>
<averageCount>10</averageCount>
</relative__error>
<normalized__absolute__error id="24">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>1021.4942351589382</deviationSum>
<relativeSum>27075.057565148352</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.40305563521015536</meanSum>
<meanSquaredSum>0.018255354969483512</meanSquaredSum>
<averageCount>10</averageCount>
</normalized__absolute__error>
<root__relative__squared__error id="25">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>10965.275196534985</deviationSum>
<relativeSum>6475981.792977156</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.4407058437419177</meanSum>
<meanSquaredSum>0.021258629086615133</meanSquaredSum>
<averageCount>10</averageCount>
</root__relative__squared__error>
<squared__error id="26">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>548.2637598267493</meanSum>
<meanSquaredSum>34173.58564301037</meanSquaredSum>
<averageCount>10</averageCount>
</squared__error>
<correlation id="27">
<labelAttribute class="NumericalAttribute" reference="14"/>
<predictedLabelAttribute class="NumericalAttribute" reference="6"/>
<exampleCount>200.0</exampleCount>
<sumLabel>36083.680010339376</sumLabel>
<sumPredict>36280.64884722099</sumPredict>
<sumLabelPredict>1.3344662294616919E7</sumLabelPredict>
<sumLabelSqr>1.3277723556890765E7</sumLabelSqr>
<sumPredictSqr>1.34225663075396E7</sumPredictSqr>
<meanSum>9.990774750706919</meanSum>
<meanSquaredSum>9.981562312225481</meanSquaredSum>
<averageCount>10</averageCount>
</correlation>
</averagesList>
<source>Evaluation</source>
</PerformanceVector>
as you see you are missing the "</object-stream>" tag. This is also the same for the *.RES files too
Stuart
This is in fact a problem with xstream. It was simple to fix from our side, although I think this is a flaw in the implementation of xstream. It requires us to close the stream after every object which now prevents us to send several XML streams in a row.
Cheers,
Simon
Well i glad i could help