The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Step-Wise Regression
1101140001
Member Posts: 3 Learner III
Anyone knows how to perform a Step-wise Regression with RM?
Which would be the right operator? or would I need to install a specific extension?
Thanks...
Tagged:
0
Answers
If you are looking for a classic stepwise regression, you can use either Forward Selection or Backward Elimination operators, which are both part of the feature selection operator folder, and use Linear Regression as the inner learner. You can set the selection logic either based on absolute change in performance or associated alpha values.
Lindon Ventures
Data Science Consulting from Certified RapidMiner Experts
@Telcontar120 This ise step-wise regression algortihm but I don't understand,must I use forward or backward elimination.
This graphic depicts forward selection. It also envisions adding all cross-product terms (2nd order interactions) and potentially even higher-order interactions. I'm not sure where you are getting this guidance, but it certainly doesn't represent state-of-the-art best practices for model construction in modern data science, in my view. I'd be very wary of overfitting if you blindly dump all these interactions terms into a regression framework without doing any kind of feature engineering or feature selection.
Lindon Ventures
Data Science Consulting from Certified RapidMiner Experts