The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Looping Clusters and store them in Repository

floflo Member Posts: 9 Learner III
edited December 2018 in Help

Hi everybody,

 

My dataset consists 4000 examples, 4 special attributes (ID, cluster, text and outlier), and 570 regular attributes from textprocessing. What I have done with the data so far was only to cluster it. Now I have 37 clusters and I want to store the 1 example set for each cluster in my repository.

Thats where my problem is: I think it should be possible with macros, "loop cluster" - and the "store" -operator, but I cant figure out how to set the parameters right.

I have a snippet attached from the data.

 

And the XML of my process so far:

<?xml version="1.0" encoding="UTF-8"?><process version="8.2.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.2.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.2.000" expanded="true" height="68" name="Retrieve Daten KAM clustered (opt.)" width="90" x="112" y="34">
<parameter key="repository_entry" value="//Datenbearbeitung MA/Filter Outliers/Daten KAM clustered (opt.)"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="8.2.000" expanded="true" height="82" name="Select Attributes" width="90" x="246" y="34">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attributes" value="ID|label|text"/>
</operator>
<operator activated="true" class="set_role" compatibility="8.2.000" expanded="true" height="82" name="Set Role" width="90" x="380" y="34">
<parameter key="attribute_name" value="label"/>
<parameter key="target_role" value="cluster"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="loop_clusters" compatibility="8.2.000" expanded="true" height="82" name="Loop Clusters" width="90" x="648" y="34">
<process expanded="true">
<operator activated="true" class="filter_examples" compatibility="8.2.000" expanded="true" height="103" name="Filter Examples" width="90" x="179" y="34">
<list key="filters_list">
<parameter key="filters_entry_key" value="label.equals.%{myMacro_0}"/>
</list>
</operator>
<operator activated="true" class="store" compatibility="8.2.000" expanded="true" height="68" name="Store" width="90" x="648" y="34">
<parameter key="repository_entry" value="999TEST"/>
</operator>
<connect from_port="cluster subset" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Store" to_port="input"/>
<connect from_op="Store" from_port="through" to_port="out 1"/>
<portSpacing port="source_cluster subset" spacing="0"/>
<portSpacing port="source_in 1" spacing="0"/>
<portSpacing port="sink_out 1" spacing="0"/>
<portSpacing port="sink_out 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="set_macros" compatibility="8.2.000" expanded="true" height="68" name="Set Macros" width="90" x="313" y="136">
<list key="macros">
<parameter key="myMacro_0" value="&quot;cluster_0&quot;"/>
</list>
</operator>
<connect from_op="Retrieve Daten KAM clustered (opt.)" from_port="output" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Loop Clusters" to_port="example set"/>
<connect from_op="Loop Clusters" from_port="out 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>

My goal is to apply the "Extract Topics from Document (LDA)" operator on every cluster with number of topics = 1 so that I can see the top words for each cluster.

 

Thank you all in advance

flo

Best Answers

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
    Solution Accepted

    Hi,

     

    Group into Collection and Loop Collection from Toolbox does it.

     

    Let me know if you need help with LDA. It's somewhat my baby.

     

    BR,

    Martin

     

    Edit: I guess you do not want to use LDA, but simple process documents or so.

    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
    Solution Accepted

    Hi @flo,

     

    have a look at the attached process. Is should do what you want?

     

    BR,

    Martin

     

    <?xml version="1.0" encoding="UTF-8"?><process version="8.2.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="8.2.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="8.2.001" expanded="true" height="68" name="Retrieve OpenRanks Reviews Beijing" width="90" x="45" y="34">
    <parameter key="repository_entry" value="data/OpenRanks Reviews Beijing"/>
    </operator>
    <operator activated="true" class="nominal_to_text" compatibility="8.2.001" expanded="true" height="82" name="Nominal to Text" width="90" x="179" y="34">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="Review"/>
    </operator>
    <operator activated="true" class="text:process_document_from_data" compatibility="8.1.000" expanded="true" height="82" name="Process Documents from Data" width="90" x="313" y="34">
    <parameter key="vector_creation" value="Term Occurrences"/>
    <parameter key="add_meta_information" value="false"/>
    <parameter key="prune_method" value="percentual"/>
    <parameter key="prune_below_percent" value="5.0"/>
    <list key="specify_weights"/>
    <process expanded="true">
    <operator activated="true" class="text:transform_cases" compatibility="8.1.000" expanded="true" height="68" name="Transform Cases" width="90" x="45" y="34"/>
    <operator activated="true" class="text:tokenize" compatibility="8.1.000" expanded="true" height="68" name="Tokenize" width="90" x="246" y="34"/>
    <operator activated="true" class="text:filter_stopwords_english" compatibility="8.1.000" expanded="true" height="68" name="Filter Stopwords (English)" width="90" x="514" y="85"/>
    <connect from_port="document" to_op="Transform Cases" to_port="document"/>
    <connect from_op="Transform Cases" from_port="document" to_op="Tokenize" to_port="document"/>
    <connect from_op="Tokenize" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
    <connect from_op="Filter Stopwords (English)" from_port="document" to_port="document 1"/>
    <portSpacing port="source_document" spacing="0"/>
    <portSpacing port="sink_document 1" spacing="0"/>
    <portSpacing port="sink_document 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="concurrency:k_means" compatibility="8.2.001" expanded="true" height="82" name="Clustering" width="90" x="447" y="34"/>
    <operator activated="true" class="operator_toolbox:group_into_collection" compatibility="1.3.000-SNAPSHOT" expanded="true" height="82" name="Group Into Collection" width="90" x="715" y="34">
    <parameter key="group_by_attribute" value="cluster"/>
    </operator>
    <operator activated="true" class="loop_collection" compatibility="8.2.001" expanded="true" height="82" name="Loop Collection" width="90" x="849" y="34">
    <process expanded="true">
    <operator activated="true" class="extract_macro" compatibility="8.2.001" expanded="true" height="68" name="Extract Macro" width="90" x="45" y="34">
    <parameter key="macro" value="clusterId"/>
    <parameter key="macro_type" value="data_value"/>
    <parameter key="attribute_name" value="cluster"/>
    <parameter key="example_index" value="1"/>
    <list key="additional_macros"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="8.2.001" expanded="true" height="82" name="Select Attributes" width="90" x="112" y="136">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="cluster"/>
    <parameter key="invert_selection" value="true"/>
    <parameter key="include_special_attributes" value="true"/>
    </operator>
    <operator activated="true" class="aggregate" compatibility="8.2.001" expanded="true" height="82" name="Aggregate (2)" width="90" x="179" y="34">
    <parameter key="use_default_aggregation" value="true"/>
    <parameter key="default_aggregation_function" value="sum"/>
    <list key="aggregation_attributes"/>
    </operator>
    <operator activated="true" class="transpose" compatibility="8.2.001" expanded="true" height="82" name="Transpose" width="90" x="313" y="34"/>
    <operator activated="true" class="sort" compatibility="8.2.001" expanded="true" height="82" name="Sort" width="90" x="447" y="34">
    <parameter key="attribute_name" value="att_1"/>
    <parameter key="sorting_direction" value="decreasing"/>
    </operator>
    <operator activated="true" class="filter_example_range" compatibility="8.2.001" expanded="true" height="82" name="Filter Example Range" width="90" x="581" y="34">
    <parameter key="first_example" value="1"/>
    <parameter key="last_example" value="5"/>
    <description align="center" color="transparent" colored="false" width="126">Take Top5</description>
    </operator>
    <operator activated="true" class="replace" compatibility="8.2.001" expanded="true" height="82" name="Replace" width="90" x="715" y="34">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="id"/>
    <parameter key="include_special_attributes" value="true"/>
    <parameter key="replace_what" value="sum\((.+)\)"/>
    <parameter key="replace_by" value="$1"/>
    </operator>
    <operator activated="true" class="rename" compatibility="8.2.001" expanded="true" height="82" name="Rename" width="90" x="849" y="34">
    <parameter key="old_name" value="att_1"/>
    <parameter key="new_name" value="sum"/>
    <list key="rename_additional_attributes"/>
    </operator>
    <operator activated="true" class="generate_attributes" compatibility="8.2.001" expanded="true" height="82" name="Generate Attributes" width="90" x="983" y="34">
    <list key="function_descriptions">
    <parameter key="cluster" value="%{clusterId}"/>
    </list>
    </operator>
    <connect from_port="single" to_op="Extract Macro" to_port="example set"/>
    <connect from_op="Extract Macro" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Aggregate (2)" to_port="example set input"/>
    <connect from_op="Aggregate (2)" from_port="example set output" to_op="Transpose" to_port="example set input"/>
    <connect from_op="Transpose" from_port="example set output" to_op="Sort" to_port="example set input"/>
    <connect from_op="Sort" from_port="example set output" to_op="Filter Example Range" to_port="example set input"/>
    <connect from_op="Filter Example Range" from_port="example set output" to_op="Replace" to_port="example set input"/>
    <connect from_op="Replace" from_port="example set output" to_op="Rename" to_port="example set input"/>
    <connect from_op="Rename" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/>
    <connect from_op="Generate Attributes" from_port="example set output" to_port="output 1"/>
    <portSpacing port="source_single" spacing="0"/>
    <portSpacing port="sink_output 1" spacing="0"/>
    <portSpacing port="sink_output 2" spacing="0"/>
    </process>
    </operator>
    <connect from_op="Retrieve OpenRanks Reviews Beijing" from_port="output" to_op="Nominal to Text" to_port="example set input"/>
    <connect from_op="Nominal to Text" from_port="example set output" to_op="Process Documents from Data" to_port="example set"/>
    <connect from_op="Process Documents from Data" from_port="example set" to_op="Clustering" to_port="example set"/>
    <connect from_op="Clustering" from_port="clustered set" to_op="Group Into Collection" to_port="exa"/>
    <connect from_op="Group Into Collection" from_port="col" to_op="Loop Collection" to_port="collection"/>
    <connect from_op="Loop Collection" from_port="output 1" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <description align="center" color="yellow" colored="false" height="50" resized="true" width="481" x="271" y="235">Task: Calculate the top 5 most frequent words per cluster</description>
    </process>
    </operator>
    </process>

     

     

    Edit: Also have a look at this blog post: https://medium.com/@mSchmitz_/understanding-clustering-cf0117148ef4 

    i think this is closer to what you really want.

    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany

Answers

  • lionelderkrikorlionelderkrikor RapidMiner Certified Analyst, Member Posts: 1,195 Unicorn

    Hi @mschmitz,

     

    This topic inspire me 2 questions about your (nice) baby Martin : 

    In deed, I executed the tutorial of this operator. For recall, in this tutorial, we create and analyze 5 documents which are strictly the same : 

     - when number of topics = 5, all documents have the same topic :

    Text_Mining_LDA.png 

     -  when number of topics = 10, the document have different topics :

    Text_Mining_LDA_2.png

     

    My first question is why, in this last case for similar documents, we don't have the same topic (like in the first case) ?

    My second question is how should we interpret the weight of words : The more the weight is high, the more the word is "caracteristic" of the topic  / the more the word "explain" the topic ?

     

    Thank you,

     

    Regards,

     

    Lionel

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist

    Hey @lionelderkrikor,

    this is totally artificial since the data is the same. The optimization uses some randomness for the start. It assings a word to a topic and so on. Thus the different names. If there would be something in, then this would change. I think you just get the priors out.

     

    I got a topic extraction on Tripadvisor Reviews somewhere. I thought i posted a blog post on it - but i can't find it? @sgenzer did i maybe just not post it?

     

    BR,

    Martin 

    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • floflo Member Posts: 9 Learner III

    Hi,

     

    Thank you @mschmitz those operators were exactly what I was looking for.

     

    Since I have each of the clusters in one Collection I thought I could use the "Extract Topics from Document"  (with number of topics : 1) on those Collections to see the TOP words for each cluster....

     

    But I have been thinking now:

    What I did was to cluster my text data by k means first and after that I did the LDA "Extract Topics from Document", so my question is:

    Isn't that somewhat the same ? I mean both operators seperates texts into "clusters" or "topics" except LDA can give me the TOP x words for each topic. 

     

    Best regards

    flo

     

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist

    Hi @flo,

    exactly. LDA is somewhat like a clustering. It also groups your documents into k-groups. The big difference is, that LDA is a Latent model.

    This means:

    • One Topic has many associated words. One word can be part of one or more topics.
    • Each document can be part of one or more topics.

    Which makes it different to normal clusterings. I think what you want is just a Process Documents on each cluster and use WordList to Data to get the frequency overview.

     

    Best,

    Martin

    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • floflo Member Posts: 9 Learner III

    @mschmitz thank you for the fast reply.

     

    ...haha you know better what I want than I do :P

    Process Documents on each cluster with the top frequent words as a WordList was what I thought that I can achieve with the LDA.

     

    Anyway thank you very much. :)

     

    Best regards

    flo

  • m_keshavarz_comm_keshavarz_com Member Posts: 28 Learner III

    Hello






    Excuse me here
    Dear friend @flo
    Did you perform the LDA algorithm on any cluster?
    Thanks if you tell me
    With respect





  • floflo Member Posts: 9 Learner III

    Hello @m_keshavarz_com,

     

    I tried to perform LDA on the clusters but it didnt work (log 0.0000). But what I will try is just to get a wordlist from each cluster and sort them top down. That should deliver a similar result to the LDA hopefully.

     

    Sorry I cant help more than that ....

     

    Best

    flo

     

     

  • floflo Member Posts: 9 Learner III

    @mschmitz wrote:
    [...]

    Which makes it different to normal clusterings. I think what you want is just a Process Documents on each cluster and use WordList to Data to get the frequency overview.

     

    Best,

    Martin


    Hi @mschmitz

     

    I hope I am not bothering you.

    Thank you so far for your input - the process documents ( vector creation: term occurrences) on each cluster gives a good overview.

    What I end up with is the following table: Unbenannt.PNG

    My question is now is there a way to show only the top 5 words per cluster ( no occurrences ) through some magic ETL which I dont know yet or is there no other choice than to transpose this table and and sort each cluster in deacreasing order manually ? 

     

    Best regards

    flo

     

     

     

  • floflo Member Posts: 9 Learner III

    Hi @mschmitz

     

    Yes that was very much what I wanted to do. I have modified the process a little bit so that it shows me the TOP 5 words for each cluster in one example set more or less like this:

     

    ClusterID           TOP1      TOP2    TOP3      TOP4      TOP5

    Cluster_1

    Cluster_2

    Cluster_3

     

    Thank you very much.

     

    Best regards

    flo

  • student_computestudent_compute Member Posts: 73 Contributor II

    Hello Dear friends and forum professors sorry..... I also want to find repetitive words in each cluster and the centers of each cluster But I do not know how Somebody tell me?

     

    and

    I'm from @mschmitz
    I used . But for 8 clusters, only cluster words are 0,1,2,5,6,7
      Gave the And the words did not give clusters 4 and 5
    what's wrong?

     

    thanks for your help

  • m_keshavarz_comm_keshavarz_com Member Posts: 28 Learner III

    Hi dear friend @flo

    Thank you very much for your help
    For me, lda also had the result likelihood = 0 on clusters
    I did not understand your sentence
    Can you explain more?and how?
    "But what I will try is just to get a wordlist from every cluster and sort them down the top. That would hopefully bring a similar result to the LDA."
    Thanks a lot

  • floflo Member Posts: 9 Learner III

    Hi @m_keshavarz_com , @student_compute

     

    maybe this can help you, if you are looking for the most frequent words for each cluster:

     

    <?xml version="1.0" encoding="UTF-8"?><process version="8.2.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="8.2.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="8.2.001" expanded="true" height="68" name="Retrieve 01_KAM Text Alles Kategorie" width="90" x="45" y="85">
    <parameter key="repository_entry" value="//Masterarbeit Final/01_Text Preprocessing/Daten/01_KAM Text Alles Kategorie"/>
    </operator>
    <operator activated="true" class="sample" compatibility="8.2.001" expanded="true" height="82" name="Sample" width="90" x="45" y="187">
    <parameter key="sample" value="relative"/>
    <parameter key="sample_size" value="40"/>
    <parameter key="sample_ratio" value="0.5"/>
    <list key="sample_size_per_class"/>
    <list key="sample_ratio_per_class"/>
    <list key="sample_probability_per_class"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="8.2.001" expanded="true" height="82" name="Select Attributes" width="90" x="45" y="289">
    <parameter key="attribute_filter_type" value="subset"/>
    <parameter key="attributes" value="ID|Verkettet"/>
    </operator>
    <operator activated="true" class="set_role" compatibility="8.2.001" expanded="true" height="82" name="Set Role" width="90" x="45" y="391">
    <parameter key="attribute_name" value="ID"/>
    <parameter key="target_role" value="id"/>
    <list key="set_additional_roles">
    <parameter key="Verkettet" value="regular"/>
    </list>
    </operator>
    <operator activated="true" class="nominal_to_text" compatibility="8.2.001" expanded="true" height="82" name="Nominal to Text" width="90" x="246" y="85">
    <parameter key="attribute" value="Verkettet"/>
    </operator>
    <operator activated="true" class="text:process_document_from_data" compatibility="8.1.000" expanded="true" height="82" name="Process Documents from Data" width="90" x="246" y="187">
    <parameter key="prune_method" value="percentual"/>
    <parameter key="prune_below_percent" value="5.0"/>
    <parameter key="prune_above_percent" value="50.0"/>
    <list key="specify_weights"/>
    <process expanded="true">
    <operator activated="true" class="text:tokenize" compatibility="8.1.000" expanded="true" height="68" name="Tokenize" width="90" x="179" y="34"/>
    <operator activated="true" class="text:transform_cases" compatibility="8.1.000" expanded="true" height="68" name="Transform Cases" width="90" x="313" y="34"/>
    <operator activated="true" class="text:filter_stopwords_english" compatibility="8.1.000" expanded="true" height="68" name="Filter Stopwords (English)" width="90" x="447" y="34"/>
    <operator activated="true" class="text:filter_by_length" compatibility="8.1.000" expanded="true" height="68" name="Filter Tokens (by Length)" width="90" x="648" y="34"/>
    <operator activated="true" class="text:stem_porter" compatibility="8.1.000" expanded="true" height="68" name="Stem (Porter)" width="90" x="782" y="34"/>
    <connect from_port="document" to_op="Tokenize" to_port="document"/>
    <connect from_op="Tokenize" from_port="document" to_op="Transform Cases" to_port="document"/>
    <connect from_op="Transform Cases" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
    <connect from_op="Filter Stopwords (English)" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
    <connect from_op="Filter Tokens (by Length)" from_port="document" to_op="Stem (Porter)" to_port="document"/>
    <connect from_op="Stem (Porter)" from_port="document" to_port="document 1"/>
    <portSpacing port="source_document" spacing="0"/>
    <portSpacing port="sink_document 1" spacing="0"/>
    <portSpacing port="sink_document 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="concurrency:k_means" compatibility="8.2.001" expanded="true" height="82" name="Clustering" width="90" x="246" y="289">
    <parameter key="k" value="5"/>
    </operator>
    <operator activated="true" class="operator_toolbox:group_into_collection" compatibility="1.2.000" expanded="true" height="82" name="Group Into Collection" width="90" x="246" y="391">
    <parameter key="group_by_attribute" value="cluster"/>
    </operator>
    <operator activated="true" class="loop_collection" compatibility="8.2.001" expanded="true" height="82" name="Loop Collection" width="90" x="447" y="85">
    <parameter key="set_iteration_macro" value="true"/>
    <parameter key="unfold" value="true"/>
    <process expanded="true">
    <operator activated="true" class="extract_macro" compatibility="8.2.001" expanded="true" height="68" name="Extract Macro" width="90" x="45" y="136">
    <parameter key="macro" value="clusterID"/>
    <parameter key="macro_type" value="data_value"/>
    <parameter key="attribute_name" value="cluster"/>
    <parameter key="example_index" value="1"/>
    <list key="additional_macros"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="8.2.001" expanded="true" height="82" name="Select Attributes (3)" width="90" x="179" y="136">
    <parameter key="attribute" value="cluster"/>
    </operator>
    <operator activated="true" class="aggregate" compatibility="8.2.001" expanded="true" height="82" name="Aggregate" width="90" x="179" y="238">
    <parameter key="use_default_aggregation" value="true"/>
    <parameter key="default_aggregation_function" value="sum"/>
    <list key="aggregation_attributes"/>
    </operator>
    <operator activated="true" class="transpose" compatibility="8.2.001" expanded="true" height="82" name="Transpose" width="90" x="179" y="340"/>
    <operator activated="true" class="sort" compatibility="8.2.001" expanded="true" height="82" name="Sort" width="90" x="179" y="442">
    <parameter key="attribute_name" value="att_1"/>
    <parameter key="sorting_direction" value="decreasing"/>
    </operator>
    <operator activated="true" breakpoints="after" class="filter_example_range" compatibility="8.2.001" expanded="true" height="82" name="Filter Example Range" width="90" x="313" y="136">
    <parameter key="first_example" value="1"/>
    <parameter key="last_example" value="7"/>
    </operator>
    <operator activated="true" breakpoints="after" class="replace" compatibility="8.2.001" expanded="true" height="82" name="Replace" width="90" x="313" y="238">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="id"/>
    <parameter key="include_special_attributes" value="true"/>
    <parameter key="replace_what" value="sum\("/>
    </operator>
    <operator activated="true" breakpoints="after" class="replace" compatibility="8.2.001" expanded="true" height="82" name="Replace (2)" width="90" x="313" y="340">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="id"/>
    <parameter key="include_special_attributes" value="true"/>
    <parameter key="replace_what" value="\)"/>
    </operator>
    <operator activated="true" breakpoints="after" class="rename" compatibility="8.2.001" expanded="true" height="82" name="Rename" width="90" x="313" y="442">
    <parameter key="old_name" value="att_1"/>
    <parameter key="new_name" value="sum"/>
    <list key="rename_additional_attributes">
    <parameter key="id" value="word"/>
    </list>
    </operator>
    <operator activated="true" breakpoints="after" class="set_role" compatibility="8.2.001" expanded="true" height="82" name="Set Role (2)" width="90" x="447" y="136">
    <parameter key="attribute_name" value="word"/>
    <list key="set_additional_roles">
    <parameter key="sum" value="regular"/>
    </list>
    </operator>
    <operator activated="true" breakpoints="after" class="transpose" compatibility="8.2.001" expanded="true" height="82" name="Transpose (2)" width="90" x="447" y="238"/>
    <operator activated="true" breakpoints="after" class="generate_attributes" compatibility="8.2.001" expanded="true" height="82" name="Generate Attributes" width="90" x="447" y="340">
    <list key="function_descriptions">
    <parameter key="clusterid" value="%{clusterID}"/>
    </list>
    </operator>
    <operator activated="true" breakpoints="after" class="set_role" compatibility="8.2.001" expanded="true" height="82" name="Set Role (3)" width="90" x="447" y="442">
    <parameter key="attribute_name" value="clusterid"/>
    <parameter key="target_role" value="id"/>
    <list key="set_additional_roles">
    <parameter key="id" value="regular"/>
    </list>
    </operator>
    <operator activated="true" breakpoints="after" class="filter_examples" compatibility="8.2.001" expanded="true" height="103" name="Filter Examples" width="90" x="581" y="136">
    <list key="filters_list">
    <parameter key="filters_entry_key" value="id.equals.word"/>
    </list>
    </operator>
    <operator activated="true" breakpoints="after" class="rename" compatibility="8.2.001" expanded="true" height="82" name="Renaming att_x into TOP x" width="90" x="715" y="238">
    <parameter key="old_name" value="att_1"/>
    <parameter key="new_name" value="TOP_1"/>
    <list key="rename_additional_attributes">
    <parameter key="att_2" value="TOP_2"/>
    <parameter key="att_3" value="TOP_3"/>
    <parameter key="att_4" value="TOP_4"/>
    <parameter key="att_5" value="TOP_5"/>
    <parameter key="att_6" value="TOP_6"/>
    <parameter key="att_7" value="TOP_7"/>
    </list>
    </operator>
    <operator activated="true" breakpoints="after" class="select_attributes" compatibility="8.2.001" expanded="true" height="82" name="Select Attributes (4)" width="90" x="581" y="340">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="id"/>
    <parameter key="invert_selection" value="true"/>
    </operator>
    <connect from_port="single" to_op="Extract Macro" to_port="example set"/>
    <connect from_op="Extract Macro" from_port="example set" to_op="Select Attributes (3)" to_port="example set input"/>
    <connect from_op="Select Attributes (3)" from_port="example set output" to_op="Aggregate" to_port="example set input"/>
    <connect from_op="Aggregate" from_port="example set output" to_op="Transpose" to_port="example set input"/>
    <connect from_op="Transpose" from_port="example set output" to_op="Sort" to_port="example set input"/>
    <connect from_op="Sort" from_port="example set output" to_op="Filter Example Range" to_port="example set input"/>
    <connect from_op="Filter Example Range" from_port="example set output" to_op="Replace" to_port="example set input"/>
    <connect from_op="Replace" from_port="example set output" to_op="Replace (2)" to_port="example set input"/>
    <connect from_op="Replace (2)" from_port="example set output" to_op="Rename" to_port="example set input"/>
    <connect from_op="Rename" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
    <connect from_op="Set Role (2)" from_port="example set output" to_op="Transpose (2)" to_port="example set input"/>
    <connect from_op="Transpose (2)" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/>
    <connect from_op="Generate Attributes" from_port="example set output" to_op="Set Role (3)" to_port="example set input"/>
    <connect from_op="Set Role (3)" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
    <connect from_op="Filter Examples" from_port="example set output" to_op="Renaming att_x into TOP x" to_port="example set input"/>
    <connect from_op="Renaming att_x into TOP x" from_port="example set output" to_op="Select Attributes (4)" to_port="example set input"/>
    <connect from_op="Select Attributes (4)" from_port="example set output" to_port="output 1"/>
    <portSpacing port="source_single" spacing="0"/>
    <portSpacing port="sink_output 1" spacing="0"/>
    <portSpacing port="sink_output 2" spacing="0"/>
    <description align="center" color="yellow" colored="false" height="63" resized="true" width="158" x="273" y="57">select number of TOP words you want to see</description>
    </process>
    </operator>
    <operator activated="true" class="append" compatibility="8.2.001" expanded="true" height="82" name="Append" width="90" x="447" y="187"/>
    <connect from_op="Retrieve 01_KAM Text Alles Kategorie" from_port="output" to_op="Sample" to_port="example set input"/>
    <connect from_op="Sample" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="Nominal to Text" to_port="example set input"/>
    <connect from_op="Nominal to Text" from_port="example set output" to_op="Process Documents from Data" to_port="example set"/>
    <connect from_op="Process Documents from Data" from_port="example set" to_op="Clustering" to_port="example set"/>
    <connect from_op="Clustering" from_port="clustered set" to_op="Group Into Collection" to_port="exa"/>
    <connect from_op="Group Into Collection" from_port="col" to_op="Loop Collection" to_port="collection"/>
    <connect from_op="Loop Collection" from_port="output 1" to_op="Append" to_port="example set 1"/>
    <connect from_op="Append" from_port="merged set" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    </process>
    </operator>
    </process>

    Of course thanks to @mschmitz for most of the process.

     

    Best

    flo

     

     

     

  • student_computestudent_compute Member Posts: 73 Contributor II

    Hello. thank you very much dear friend:smileyhappy:
    But I want to know how to find the repetitive words of each cluster and the center of each cluster?
    Thank you so much for your kindness

Sign In or Register to comment.