The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Preprocessing market basket data

RobotGirlRobotGirl Member Posts: 2 Learner III
edited September 2019 in Help

Hi,

I m a student from Pakistan. I am not much familiar with Rapidminer. I am given a task of market basket analysis and have almost 10,000 rows of data to apply FP-growth and apriori.

My given data is in the format:

1 cheese, bread, milk

2 milk cake

3 cake, cheese, milk

and for apriori algorithm I need to convert data into binary matrix format like:

TID | cheese bread milk cake

1 | 1 1 1 0

2| 0 0 1 1

3| 1 0 1 1

how can I preprocess my data in rapidminer to get this format

thanks in advance :) 

Answers

  • lionelderkrikorlionelderkrikor RapidMiner Certified Analyst, Member Posts: 1,195 Unicorn

    Hi @RobotGirl,

     

    For the moment, I don't know how to perform your data transformation with RapidMiner's native operators.(I will think about it)

    So waiting, I propose a Python script : 

    I assume that your initial dataset is under this form : 

    Data_Preparation_2.png

     

    By executing the process, you obtain a dataset like that : 

    Data_Preparation_3.png

     

    the process : 

    <?xml version="1.0" encoding="UTF-8"?><process version="9.0.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="9.0.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="read_excel" compatibility="9.0.001" expanded="true" height="68" name="Read Excel" width="90" x="112" y="34">
    <parameter key="excel_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Data_Preparation\Purchases_2.xlsx"/>
    <list key="annotations">
    <parameter key="0" value="Name"/>
    </list>
    <parameter key="date_format" value="MMM d, yyyy h:mm:ss a z"/>
    <list key="data_set_meta_data_information">
    <parameter key="0" value="Id.true.integer.attribute"/>
    <parameter key="1" value="B.true.polynominal.attribute"/>
    <parameter key="2" value="C.true.polynominal.attribute"/>
    <parameter key="3" value="D.true.polynominal.attribute"/>
    </list>
    <parameter key="read_not_matching_values_as_missings" value="false"/>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="9.0.001" expanded="true" height="82" name="Select Attributes" width="90" x="246" y="34">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="Id"/>
    <parameter key="invert_selection" value="true"/>
    </operator>
    <operator activated="true" class="python_scripting:execute_python" compatibility="7.4.000" expanded="true" height="82" name="Execute Python" width="90" x="380" y="34">
    <parameter key="script" value="import pandas as pd&#10;import numpy as np&#10;&#10;# rm_main is a mandatory function, &#10;# the number of arguments has to be the number of input ports (can be none)&#10;&#10;&#10;def rm_main(data):&#10;&#10; def get_series(string): &#10; return (data == string).T.any() &#10;&#10; cols = np.unique(data.stack().values).tolist() &#10; data_2 = pd.DataFrame(columns=cols, index=range(len(data))) &#10; &#10; for col in cols: &#10; data_2[col] = get_series(col)&#10;&#10; &#10; return data_2"/>
    </operator>
    <operator activated="true" class="generate_id" compatibility="9.0.001" expanded="true" height="82" name="Generate ID" width="90" x="514" y="34"/>
    <connect from_op="Read Excel" from_port="output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_op="Execute Python" to_port="input 1"/>
    <connect from_op="Execute Python" from_port="output 1" to_op="Generate ID" to_port="example set input"/>
    <connect from_op="Generate ID" from_port="example set output" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    </process>
    </operator>
    </process>

    To execute this process you need : 

     - to install Python on your computer

     - to install Execute Python operator (from the marketPlace)

     

    I hope it helps,

     

    Regards,

     

    Lionel

  • RobotGirlRobotGirl Member Posts: 2 Learner III

    thanks for your respond @lionelderkrikor  but my task is to use a rapidminer tool without any external coding.

  • earmijoearmijo Member Posts: 271 Unicorn

    You can do it directly with the new version of the FP-Growth operator.

     

    Your dataset (CSV file should be like this):

     

    id;basket
    1;cheese,bread,milk
    2;milk,cake
    3;cake,cheese,milk

     

    Please notice the ';'. This is the column separator. So this dataset has only two colums 'id' and 'basket'.

    Read it into your repository. It should look like the image below:

    Screen Shot 2018-08-18 at 2.01.45 PM.png

     

    Set the first column to the role of ID. 

    When you use the FP-growth operator make sure that in Input format you select 'items list in a column' and the item separators is set to  ','. 

     

    Now run the process below:

     

    <?xml version="1.0" encoding="UTF-8"?><process version="9.0.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="9.0.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="9.0.001" expanded="true" height="68" name="Retrieve fpgrowth" width="90" x="112" y="85">
    <parameter key="repository_entry" value="//Clases/fpgrowth"/>
    </operator>
    <operator activated="true" class="set_role" compatibility="9.0.001" expanded="true" height="82" name="Set Role" width="90" x="313" y="85">
    <parameter key="attribute_name" value="id"/>
    <parameter key="target_role" value="id"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="concurrency:fp_growth" compatibility="9.0.001" expanded="true" height="82" name="FP-Growth" width="90" x="514" y="85">
    <parameter key="input_format" value="item list in a column"/>
    <parameter key="item_separators" value=","/>
    <parameter key="min_support" value="0.01"/>
    <enumeration key="must_contain_list"/>
    </operator>
    <connect from_op="Retrieve fpgrowth" from_port="output" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="FP-Growth" to_port="example set"/>
    <connect from_op="FP-Growth" from_port="example set" to_port="result 1"/>
    <connect from_op="FP-Growth" from_port="frequent sets" to_port="result 2"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    </process>
    </operator>
    </process>

     

  • CarlosQCarlosQ Member, University Professor Posts: 7 University Professor

    I got curious about this question. 

     

    How would you preprocess the original CSV to replace the first ',' with a ';'?

     

    A few minutes later of googling the answer:

     

    1) Open the CSV in any decent editor (atom,ultraedit,notepad++,etc)

    2) Find:   

    ^([^,]*),

    3) Replace

    $1;

    Regex, of course. I should learn more Regex.

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist

    and you don't need to use a editor but can use rapidminer's Replace operator for it :)

     

    Cheers,

    Martin

    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
Sign In or Register to comment.