The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Classification of products

994kaca994kaca Member Posts: 5 Learner III
edited December 2018 in Help

Hi there,

I have one problem to solve. I have where each row corresponds to a single product. There are a total of 93 numerical features, which represent counts of different events. There are nine categories for all products. My objective is to classify product into 9 different categories. There are 61878 examples. I tried libSVM, k-NN in rapidminer, but i got very high accuracy,about 99,9 so something isn't done well. Does anybody know how to solve this?

 

Tagged:

Answers

  • sgenzersgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    hello @994kaca welcome to the community! Some quick requests so we can help you:


    • Post your XML process here in this thread (see this post for instructions on How to Post on the Community)
    • Attach your dataset if possible (use a fictionalized version if there are privacy concerns)
    • Make sure you have all necessary extensions installed (see https://youtu.be/pjBqG3xtXx4)

    Scott

     

    [Edit - I moved your post from Radoop to Getting Started as this is the more appropriate place for your query. SG]

  • 994kaca994kaca Member Posts: 5 Learner III

    Hi,

    I don't have XML process, i can attach my dataset?

  • 994kaca994kaca Member Posts: 5 Learner III

    Dataset is too large for this message. Here is link where you can find training set for this problem. https://www.kaggle.com/c/otto-group-product-classification-challenge/data

  • sgenzersgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    hi @994kaca thank you for your reply. So if you do not have an XML, may I suggest that you start using RapidMiner and let us know whern you get stuck? At that point paste your process in this thread as XML and we can go from there.


    Thanks!

     

    Scott

     

  • 994kaca994kaca Member Posts: 5 Learner III
    <?xml version="1.0" encoding="UTF-8"?><process version="8.2.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="8.2.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="8.2.001" expanded="true" height="68" name="Retrieve" width="90" x="45" y="34">
    <parameter key="repository_entry" value="../Data/train"/>
    </operator>
    <operator activated="true" class="sample_stratified" compatibility="8.2.001" expanded="true" height="82" name="Sample (Stratified)" width="90" x="179" y="34">
    <parameter key="sample" value="relative"/>
    <parameter key="sample_size" value="6187"/>
    <parameter key="use_local_random_seed" value="true"/>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.001" expanded="true" height="145" name="Cross Validation" width="90" x="313" y="34">
    <process expanded="true">
    <operator activated="true" class="k_nn" compatibility="8.2.001" expanded="true" height="82" name="k-NN" width="90" x="112" y="34"/>
    <connect from_port="training set" to_op="k-NN" to_port="training set"/>
    <connect from_op="k-NN" from_port="model" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="8.2.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_classification" compatibility="8.2.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
    <parameter key="classification_error" value="true"/>
    <parameter key="weighted_mean_recall" value="true"/>
    <parameter key="weighted_mean_precision" value="true"/>
    <list key="class_weights"/>
    </operator>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    </process>
    </operator>
    <connect from_op="Retrieve" from_port="output" to_op="Sample (Stratified)" to_port="example set input"/>
    <connect from_op="Sample (Stratified)" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
    <connect from_op="Cross Validation" from_port="example set" to_port="result 3"/>
    <connect from_op="Cross Validation" from_port="test result set" to_port="result 2"/>
    <connect from_op="Cross Validation" from_port="performance 1" to_port="result 4"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    <portSpacing port="sink_result 5" spacing="0"/>
    </process>
    </operator>
    </process>

    Here you are. I didn't undrstand your message at first,sorry. The problem is that accuracy for this k-nn is 99,9 which is too high,and something is wrong, do you know where the problem is? 

     

    Thank you

  • sgenzersgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager

    ah thank you for the XML. :)

     

    Beats the heck out of me how you get 99% accuracy. I get 71.49%.

     

    <?xml version="1.0" encoding="UTF-8"?><process version="9.0.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="9.0.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="read_csv" compatibility="9.0.001" expanded="true" height="68" name="Read CSV" width="90" x="45" y="34">
    <parameter key="csv_file" value="/Users/genzerconsulting/Desktop/all/train.csv"/>
    <parameter key="column_separators" value=","/>
    <parameter key="skip_comments" value="true"/>
    <parameter key="date_format" value="MMM d, yyyy h:mm:ss a z"/>
    <list key="annotations"/>
    <parameter key="encoding" value="UTF-8"/>
    <list key="data_set_meta_data_information">
    <parameter key="0" value="id.true.integer.id"/>
    <parameter key="1" value="feat_1.true.integer.attribute"/>
    <parameter key="2" value="feat_2.true.integer.attribute"/>
    <parameter key="3" value="feat_3.true.integer.attribute"/>
    <parameter key="4" value="feat_4.true.integer.attribute"/>
    <parameter key="5" value="feat_5.true.integer.attribute"/>
    <parameter key="6" value="feat_6.true.integer.attribute"/>
    <parameter key="7" value="feat_7.true.integer.attribute"/>
    <parameter key="8" value="feat_8.true.integer.attribute"/>
    <parameter key="9" value="feat_9.true.integer.attribute"/>
    <parameter key="10" value="feat_10.true.integer.attribute"/>
    <parameter key="11" value="feat_11.true.integer.attribute"/>
    <parameter key="12" value="feat_12.true.integer.attribute"/>
    <parameter key="13" value="feat_13.true.integer.attribute"/>
    <parameter key="14" value="feat_14.true.integer.attribute"/>
    <parameter key="15" value="feat_15.true.integer.attribute"/>
    <parameter key="16" value="feat_16.true.integer.attribute"/>
    <parameter key="17" value="feat_17.true.integer.attribute"/>
    <parameter key="18" value="feat_18.true.integer.attribute"/>
    <parameter key="19" value="feat_19.true.integer.attribute"/>
    <parameter key="20" value="feat_20.true.integer.attribute"/>
    <parameter key="21" value="feat_21.true.integer.attribute"/>
    <parameter key="22" value="feat_22.true.integer.attribute"/>
    <parameter key="23" value="feat_23.true.integer.attribute"/>
    <parameter key="24" value="feat_24.true.integer.attribute"/>
    <parameter key="25" value="feat_25.true.integer.attribute"/>
    <parameter key="26" value="feat_26.true.integer.attribute"/>
    <parameter key="27" value="feat_27.true.integer.attribute"/>
    <parameter key="28" value="feat_28.true.integer.attribute"/>
    <parameter key="29" value="feat_29.true.integer.attribute"/>
    <parameter key="30" value="feat_30.true.integer.attribute"/>
    <parameter key="31" value="feat_31.true.integer.attribute"/>
    <parameter key="32" value="feat_32.true.integer.attribute"/>
    <parameter key="33" value="feat_33.true.integer.attribute"/>
    <parameter key="34" value="feat_34.true.integer.attribute"/>
    <parameter key="35" value="feat_35.true.integer.attribute"/>
    <parameter key="36" value="feat_36.true.integer.attribute"/>
    <parameter key="37" value="feat_37.true.integer.attribute"/>
    <parameter key="38" value="feat_38.true.integer.attribute"/>
    <parameter key="39" value="feat_39.true.integer.attribute"/>
    <parameter key="40" value="feat_40.true.integer.attribute"/>
    <parameter key="41" value="feat_41.true.integer.attribute"/>
    <parameter key="42" value="feat_42.true.integer.attribute"/>
    <parameter key="43" value="feat_43.true.integer.attribute"/>
    <parameter key="44" value="feat_44.true.integer.attribute"/>
    <parameter key="45" value="feat_45.true.integer.attribute"/>
    <parameter key="46" value="feat_46.true.integer.attribute"/>
    <parameter key="47" value="feat_47.true.integer.attribute"/>
    <parameter key="48" value="feat_48.true.integer.attribute"/>
    <parameter key="49" value="feat_49.true.integer.attribute"/>
    <parameter key="50" value="feat_50.true.integer.attribute"/>
    <parameter key="51" value="feat_51.true.integer.attribute"/>
    <parameter key="52" value="feat_52.true.integer.attribute"/>
    <parameter key="53" value="feat_53.true.integer.attribute"/>
    <parameter key="54" value="feat_54.true.integer.attribute"/>
    <parameter key="55" value="feat_55.true.integer.attribute"/>
    <parameter key="56" value="feat_56.true.integer.attribute"/>
    <parameter key="57" value="feat_57.true.integer.attribute"/>
    <parameter key="58" value="feat_58.true.integer.attribute"/>
    <parameter key="59" value="feat_59.true.integer.attribute"/>
    <parameter key="60" value="feat_60.true.integer.attribute"/>
    <parameter key="61" value="feat_61.true.integer.attribute"/>
    <parameter key="62" value="feat_62.true.integer.attribute"/>
    <parameter key="63" value="feat_63.true.integer.attribute"/>
    <parameter key="64" value="feat_64.true.integer.attribute"/>
    <parameter key="65" value="feat_65.true.integer.attribute"/>
    <parameter key="66" value="feat_66.true.integer.attribute"/>
    <parameter key="67" value="feat_67.true.integer.attribute"/>
    <parameter key="68" value="feat_68.true.integer.attribute"/>
    <parameter key="69" value="feat_69.true.integer.attribute"/>
    <parameter key="70" value="feat_70.true.integer.attribute"/>
    <parameter key="71" value="feat_71.true.integer.attribute"/>
    <parameter key="72" value="feat_72.true.integer.attribute"/>
    <parameter key="73" value="feat_73.true.integer.attribute"/>
    <parameter key="74" value="feat_74.true.integer.attribute"/>
    <parameter key="75" value="feat_75.true.integer.attribute"/>
    <parameter key="76" value="feat_76.true.integer.attribute"/>
    <parameter key="77" value="feat_77.true.integer.attribute"/>
    <parameter key="78" value="feat_78.true.integer.attribute"/>
    <parameter key="79" value="feat_79.true.integer.attribute"/>
    <parameter key="80" value="feat_80.true.integer.attribute"/>
    <parameter key="81" value="feat_81.true.integer.attribute"/>
    <parameter key="82" value="feat_82.true.integer.attribute"/>
    <parameter key="83" value="feat_83.true.integer.attribute"/>
    <parameter key="84" value="feat_84.true.integer.attribute"/>
    <parameter key="85" value="feat_85.true.integer.attribute"/>
    <parameter key="86" value="feat_86.true.integer.attribute"/>
    <parameter key="87" value="feat_87.true.integer.attribute"/>
    <parameter key="88" value="feat_88.true.integer.attribute"/>
    <parameter key="89" value="feat_89.true.integer.attribute"/>
    <parameter key="90" value="feat_90.true.integer.attribute"/>
    <parameter key="91" value="feat_91.true.integer.attribute"/>
    <parameter key="92" value="feat_92.true.integer.attribute"/>
    <parameter key="93" value="feat_93.true.integer.attribute"/>
    <parameter key="94" value="target.true.polynominal.label"/>
    </list>
    <parameter key="read_not_matching_values_as_missings" value="false"/>
    </operator>
    <operator activated="true" class="sample_stratified" compatibility="9.0.001" expanded="true" height="82" name="Sample (Stratified)" width="90" x="179" y="34">
    <parameter key="sample" value="relative"/>
    <parameter key="sample_size" value="6187"/>
    <parameter key="use_local_random_seed" value="true"/>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="9.0.001" expanded="true" height="145" name="Cross Validation" width="90" x="313" y="34">
    <process expanded="true">
    <operator activated="true" class="k_nn" compatibility="9.0.001" expanded="true" height="82" name="k-NN" width="90" x="112" y="34"/>
    <connect from_port="training set" to_op="k-NN" to_port="training set"/>
    <connect from_op="k-NN" from_port="model" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="9.0.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_classification" compatibility="9.0.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
    <parameter key="classification_error" value="true"/>
    <parameter key="weighted_mean_recall" value="true"/>
    <parameter key="weighted_mean_precision" value="true"/>
    <list key="class_weights"/>
    </operator>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    </process>
    </operator>
    <connect from_op="Read CSV" from_port="output" to_op="Sample (Stratified)" to_port="example set input"/>
    <connect from_op="Sample (Stratified)" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
    <connect from_op="Cross Validation" from_port="example set" to_port="result 3"/>
    <connect from_op="Cross Validation" from_port="test result set" to_port="result 2"/>
    <connect from_op="Cross Validation" from_port="performance 1" to_port="result 4"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    <portSpacing port="sink_result 5" spacing="0"/>
    </process>
    </operator>
    </process>

    Scott

Sign In or Register to comment.