The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
time series: create weakly, monthly, yearly averages on time series
I have a number to financial timeries
Some are daily, some are weekly, some are monthly etc
I want to convert them into the same frequency by averaging ie all values inside a month
ie if X1: has daily values for the previous 10 years, Date:the corresponding index
I want to group all the values of the Date index by month and replace them with a new variable that has one value ie the average of all dates corresponding to that month
Any suggestions how one could do that?
Some are daily, some are weekly, some are monthly etc
I want to convert them into the same frequency by averaging ie all values inside a month
ie if X1: has daily values for the previous 10 years, Date:the corresponding index
I want to group all the values of the Date index by month and replace them with a new variable that has one value ie the average of all dates corresponding to that month
Any suggestions how one could do that?
Tagged:
0
Answers
However, if you have different series data frequency, you can do this the conventional way inside RapidMiner by simply using Date to Numerical, for example, extracting the month and year (separately) from your date/time stamps, and then use the regular Aggregate operator to get your results grouped by month and year.
Lindon Ventures
Data Science Consulting from Certified RapidMiner Experts
Thanks for the feedback about the time series extension. It is always good to hear feedback. You are right the current time series operators are not yet directly designed to handle time series of different frequencies or non-equidistant time series. This is planned for upcoming releases.
I want to suggest also another solution. Performing an outer join on time series with different frequencies, results in a joined data set with missing values for the timestamps for which the corresponding attributes don't have values in the original data sets. You can then use Replace Missing Values (Series) to interpolate these and have a resulting dataset with a single frequency.
Here is a demo process, how to do this:
Best regards,
Fabian