The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Split data set and low quality operator

AndyJAndyJ Member Posts: 2 Learner II
edited June 2019 in Help
Hi people,

I'm new to Rapidminer so be a bit passionate to me :smile: 

Two questions:
1. My issue is that I would like to split out my full data set into a training set(use this also for validation) and test set. From my understanding it's best practice to spilt out the test set straight away (and the before I do for instance any exploratory data analysis and feature selection analysis on the data). 

So If I split my full data set with "Split data" operator and use the "Remove correlated attributes" (referred to as "corr.") operator on the training set and the corr. operator remove some attributes. At the end I store this final training set. Now my test set has more attributes than my tranining set - how do I remove the same attributes generated by the corr. operator to my test set? I don't want to use the corr. operator on my test set because it could potensially remove fewer or other attributes. Is it possible to generation the test set in this automatic / dynamic way? Are there any other ways you guys do this process? 

2. Do there exists any "low quality" operator (i.e. the same low quality operations carried out inside the Turbo prep tab -> Cleanse -> Remove low quality) in Rapidminer Design? 

Love to hear from you. 

Best regards
Andy
Tagged:

Comments

  • varunm1varunm1 Member Posts: 1,207 Unicorn
    edited January 2019
    Hi @AndyJ

    As mentioned above by @Telcontar120 cross-validation is better than splitting as we don't know which part of data is actually useful. In case, if you want to try here is an example of cross-validation operator. Just copy the XML code in new process XML window that can be found in View --> Show Panel --> XML. Paste the below code there and click on the green tick mark. You can then check the operators and options This is 5 fold CV which means data is divided into 5 splits and trained and tested 5 times. Please go through RM tutorial for in-depth understanding.

    <?xml version="1.0" encoding="UTF-8"?><process version="9.1.000">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="generate_data" compatibility="9.1.000" expanded="true" height="68" name="Generate Data" width="90" x="112" y="34">
            <parameter key="target_function" value="simple non linear classification"/>
            <parameter key="number_examples" value="1000"/>
            <parameter key="number_of_attributes" value="5"/>
            <parameter key="attributes_lower_bound" value="-10.0"/>
            <parameter key="attributes_upper_bound" value="10.0"/>
            <parameter key="gaussian_standard_deviation" value="10.0"/>
            <parameter key="largest_radius" value="10.0"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <parameter key="datamanagement" value="double_array"/>
            <parameter key="data_management" value="auto"/>
          </operator>
          <operator activated="true" class="concurrency:cross_validation" compatibility="9.1.000" expanded="true" height="145" name="Cross Validation" width="90" x="380" y="34">
            <parameter key="split_on_batch_attribute" value="false"/>
            <parameter key="leave_one_out" value="false"/>
            <parameter key="number_of_folds" value="5"/>
            <parameter key="sampling_type" value="automatic"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <parameter key="enable_parallel_execution" value="true"/>
            <process expanded="true">
              <operator activated="true" class="neural_net" compatibility="9.1.000" expanded="true" height="82" name="Neural Net" width="90" x="112" y="34">
                <list key="hidden_layers"/>
                <parameter key="training_cycles" value="200"/>
                <parameter key="learning_rate" value="0.01"/>
                <parameter key="momentum" value="0.9"/>
                <parameter key="decay" value="false"/>
                <parameter key="shuffle" value="true"/>
                <parameter key="normalize" value="true"/>
                <parameter key="error_epsilon" value="1.0E-4"/>
                <parameter key="use_local_random_seed" value="false"/>
                <parameter key="local_random_seed" value="1992"/>
              </operator>
              <connect from_port="training set" to_op="Neural Net" to_port="training set"/>
              <connect from_op="Neural Net" from_port="model" to_port="model"/>
              <portSpacing port="source_training set" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
              <portSpacing port="sink_through 1" spacing="0"/>
            </process>
            <process expanded="true">
              <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
                <list key="application_parameters"/>
                <parameter key="create_view" value="false"/>
              </operator>
              <operator activated="true" class="performance_binominal_classification" compatibility="9.1.000" expanded="true" height="82" name="Performance (2)" width="90" x="246" y="34">
                <parameter key="main_criterion" value="first"/>
                <parameter key="accuracy" value="true"/>
                <parameter key="classification_error" value="false"/>
                <parameter key="kappa" value="true"/>
                <parameter key="AUC (optimistic)" value="false"/>
                <parameter key="AUC" value="true"/>
                <parameter key="AUC (pessimistic)" value="false"/>
                <parameter key="precision" value="true"/>
                <parameter key="recall" value="true"/>
                <parameter key="lift" value="false"/>
                <parameter key="fallout" value="false"/>
                <parameter key="f_measure" value="true"/>
                <parameter key="false_positive" value="false"/>
                <parameter key="false_negative" value="false"/>
                <parameter key="true_positive" value="false"/>
                <parameter key="true_negative" value="false"/>
                <parameter key="sensitivity" value="false"/>
                <parameter key="specificity" value="false"/>
                <parameter key="youden" value="false"/>
                <parameter key="positive_predictive_value" value="false"/>
                <parameter key="negative_predictive_value" value="false"/>
                <parameter key="psep" value="false"/>
                <parameter key="skip_undefined_labels" value="true"/>
                <parameter key="use_example_weights" value="true"/>
              </operator>
              <connect from_port="model" to_op="Apply Model" to_port="model"/>
              <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
              <connect from_op="Apply Model" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
              <connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
              <portSpacing port="source_model" spacing="0"/>
              <portSpacing port="source_test set" spacing="0"/>
              <portSpacing port="source_through 1" spacing="0"/>
              <portSpacing port="sink_test set results" spacing="0"/>
              <portSpacing port="sink_performance 1" spacing="0"/>
              <portSpacing port="sink_performance 2" spacing="0"/>
            </process>
          </operator>
          <connect from_op="Generate Data" from_port="output" to_op="Cross Validation" to_port="example set"/>
          <connect from_op="Cross Validation" from_port="performance 1" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
    

    Thanks
    Varun
    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • AndyJAndyJ Member Posts: 2 Learner II
    Thanks for the comments.
    I understand that CV is the way and an estimate of the generalization performance of the process for building a model (and that it also includes the transformation into this process). I have seen some tutorials on how to do this in RM.
    But don't you divide your data sets into three parts? One training set, validation set (taken care of by the CV-process with X-folds) and one test set(i.e. one unseen data set as a final sanity check of your model). Because of potential data leakage from the validation set in the tuning process I would always like to do a final sanity check on my model on data that have never been used in the process before (what I referred to as test set). By this reason I hoped that there existed some kind of "save transformations" operator (e.g. pipeline as in scikit-learn) that I could have used on the test set in RM so I have the same transformations.
    Love to hear your opinions on this because my lack of knowledge of the RM product.









  • varunm1varunm1 Member Posts: 1,207 Unicorn
    edited January 2019
    Hi @AndyJ

    CV divides data into train and test (not validation). For example in 5 fold it divides the data into 5 subsets(1,2,3,4,5) and uses first four(1,2,3,4) for training and other (5) for testing(unlabelled or unseen), Then it saves performance metrics, clears the model and takes next four folds(2,3,4,5) for train and 1 test. This happens till all data is used for training and testing. The stored performance metrics are aggregated to give the final performance. This is the main reason CV is used as it mostly eliminate overfitting. I am not sure about leakage.

    I got what you are asking, If you want manually test, Split the data using split operator into 90 and 10 percent. Feed 90% into CV and then get the model output from CV operator again connect that to apply the model and connect the 10% data you set aside to the apply model as well. I see keras model operator had the option for validation set percentage but not for others. I think you need to split using the split operator.

    <?xml version="1.0" encoding="UTF-8"?><process version="9.1.000">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="generate_data" compatibility="9.1.000" expanded="true" height="68" name="Generate Data" width="90" x="112" y="34">
            <parameter key="target_function" value="simple non linear classification"/>
            <parameter key="number_examples" value="1000"/>
            <parameter key="number_of_attributes" value="5"/>
            <parameter key="attributes_lower_bound" value="-10.0"/>
            <parameter key="attributes_upper_bound" value="10.0"/>
            <parameter key="gaussian_standard_deviation" value="10.0"/>
            <parameter key="largest_radius" value="10.0"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <parameter key="datamanagement" value="double_array"/>
            <parameter key="data_management" value="auto"/>
          </operator>
          <operator activated="true" class="split_data" compatibility="9.1.000" expanded="true" height="103" name="Split Data" width="90" x="246" y="85">
            <enumeration key="partitions">
              <parameter key="ratio" value="0.9"/>
              <parameter key="ratio" value="0.1"/>
            </enumeration>
            <parameter key="sampling_type" value="automatic"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
          </operator>
          <operator activated="true" class="concurrency:cross_validation" compatibility="9.1.000" expanded="true" height="145" name="Cross Validation" width="90" x="380" y="34">
            <parameter key="split_on_batch_attribute" value="false"/>
            <parameter key="leave_one_out" value="false"/>
            <parameter key="number_of_folds" value="5"/>
            <parameter key="sampling_type" value="automatic"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <parameter key="enable_parallel_execution" value="true"/>
            <process expanded="true">
              <operator activated="true" class="neural_net" compatibility="9.1.000" expanded="true" height="82" name="Neural Net" width="90" x="112" y="34">
                <list key="hidden_layers"/>
                <parameter key="training_cycles" value="200"/>
                <parameter key="learning_rate" value="0.01"/>
                <parameter key="momentum" value="0.9"/>
                <parameter key="decay" value="false"/>
                <parameter key="shuffle" value="true"/>
                <parameter key="normalize" value="true"/>
                <parameter key="error_epsilon" value="1.0E-4"/>
                <parameter key="use_local_random_seed" value="false"/>
                <parameter key="local_random_seed" value="1992"/>
              </operator>
              <connect from_port="training set" to_op="Neural Net" to_port="training set"/>
              <connect from_op="Neural Net" from_port="model" to_port="model"/>
              <portSpacing port="source_training set" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
              <portSpacing port="sink_through 1" spacing="0"/>
            </process>
            <process expanded="true">
              <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
                <list key="application_parameters"/>
                <parameter key="create_view" value="false"/>
              </operator>
              <operator activated="true" class="performance_binominal_classification" compatibility="9.1.000" expanded="true" height="82" name="Performance (2)" width="90" x="246" y="34">
                <parameter key="main_criterion" value="first"/>
                <parameter key="accuracy" value="true"/>
                <parameter key="classification_error" value="false"/>
                <parameter key="kappa" value="true"/>
                <parameter key="AUC (optimistic)" value="false"/>
                <parameter key="AUC" value="true"/>
                <parameter key="AUC (pessimistic)" value="false"/>
                <parameter key="precision" value="true"/>
                <parameter key="recall" value="true"/>
                <parameter key="lift" value="false"/>
                <parameter key="fallout" value="false"/>
                <parameter key="f_measure" value="true"/>
                <parameter key="false_positive" value="false"/>
                <parameter key="false_negative" value="false"/>
                <parameter key="true_positive" value="false"/>
                <parameter key="true_negative" value="false"/>
                <parameter key="sensitivity" value="false"/>
                <parameter key="specificity" value="false"/>
                <parameter key="youden" value="false"/>
                <parameter key="positive_predictive_value" value="false"/>
                <parameter key="negative_predictive_value" value="false"/>
                <parameter key="psep" value="false"/>
                <parameter key="skip_undefined_labels" value="true"/>
                <parameter key="use_example_weights" value="true"/>
              </operator>
              <connect from_port="model" to_op="Apply Model" to_port="model"/>
              <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
              <connect from_op="Apply Model" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
              <connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
              <portSpacing port="source_model" spacing="0"/>
              <portSpacing port="source_test set" spacing="0"/>
              <portSpacing port="source_through 1" spacing="0"/>
              <portSpacing port="sink_test set results" spacing="0"/>
              <portSpacing port="sink_performance 1" spacing="0"/>
              <portSpacing port="sink_performance 2" spacing="0"/>
            </process>
          </operator>
          <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="514" y="187">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="performance_binominal_classification" compatibility="9.1.000" expanded="true" height="82" name="Performance" width="90" x="648" y="136">
            <parameter key="main_criterion" value="first"/>
            <parameter key="accuracy" value="true"/>
            <parameter key="classification_error" value="false"/>
            <parameter key="kappa" value="true"/>
            <parameter key="AUC (optimistic)" value="false"/>
            <parameter key="AUC" value="true"/>
            <parameter key="AUC (pessimistic)" value="false"/>
            <parameter key="precision" value="true"/>
            <parameter key="recall" value="true"/>
            <parameter key="lift" value="false"/>
            <parameter key="fallout" value="false"/>
            <parameter key="f_measure" value="false"/>
            <parameter key="false_positive" value="false"/>
            <parameter key="false_negative" value="false"/>
            <parameter key="true_positive" value="false"/>
            <parameter key="true_negative" value="false"/>
            <parameter key="sensitivity" value="false"/>
            <parameter key="specificity" value="false"/>
            <parameter key="youden" value="false"/>
            <parameter key="positive_predictive_value" value="false"/>
            <parameter key="negative_predictive_value" value="false"/>
            <parameter key="psep" value="false"/>
            <parameter key="skip_undefined_labels" value="true"/>
            <parameter key="use_example_weights" value="true"/>
          </operator>
          <connect from_op="Generate Data" from_port="output" to_op="Split Data" to_port="example set"/>
          <connect from_op="Split Data" from_port="partition 1" to_op="Cross Validation" to_port="example set"/>
          <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model (2)" to_port="unlabelled data"/>
          <connect from_op="Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
          <connect from_op="Cross Validation" from_port="performance 1" to_port="result 2"/>
          <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
          <portSpacing port="sink_result 3" spacing="0"/>
        </process>
      </operator>
    </process>
    



    Thanks,
    Varun
    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • varunm1varunm1 Member Posts: 1,207 Unicorn

    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • SGolbertSGolbert RapidMiner Certified Analyst, Member Posts: 344 Unicorn
    Hi,

    The test set with 10% of the data would only be needed if the rest of the data was used in some kind of model selection, like parameter optimization. It is of course possible to use an external cross validation instead of the 90:10 split.

    Example 1: External split validation
    <?xml version="1.0" encoding="UTF-8"?><process version="9.1.000"><br>  <context><br>    <input/><br>    <output/><br>    <macros/><br>  </context><br>  <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process"><br>    <parameter key="logverbosity" value="init"/><br>    <parameter key="random_seed" value="2001"/><br>    <parameter key="send_mail" value="never"/><br>    <parameter key="notification_email" value=""/><br>    <parameter key="process_duration_for_mail" value="30"/><br>    <parameter key="encoding" value="SYSTEM"/><br>    <process expanded="true"><br>      <operator activated="true" class="retrieve" compatibility="9.1.000" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="112" y="85"><br>        <parameter key="repository_entry" value="//Samples/data/Titanic Training"/><br>      </operator><br>      <operator activated="true" class="split_data" compatibility="9.1.000" expanded="true" height="103" name="Split Data" width="90" x="246" y="85"><br>        <enumeration key="partitions"><br>          <parameter key="ratio" value="0.9"/><br>          <parameter key="ratio" value="0.1"/><br>        </enumeration><br>        <parameter key="sampling_type" value="automatic"/><br>        <parameter key="use_local_random_seed" value="false"/><br>        <parameter key="local_random_seed" value="1992"/><br>      </operator><br>      <operator activated="true" class="optimize_parameters_evolutionary" compatibility="9.1.000" expanded="true" height="124" name="Optimize Parameters (Evolutionary)" width="90" x="447" y="85"><br>        <list key="parameters"><br>          <parameter key="Random Forest.number_of_trees" value="[1.0;100.0]"/><br>          <parameter key="Random Forest.minimal_leaf_size" value="[1.0;100.0]"/><br>          <parameter key="Random Forest.minimal_size_for_split" value="[1.0;100.0]"/><br>        </list><br>        <parameter key="error_handling" value="fail on error"/><br>        <parameter key="max_generations" value="50"/><br>        <parameter key="use_early_stopping" value="false"/><br>        <parameter key="generations_without_improval" value="2"/><br>        <parameter key="specify_population_size" value="true"/><br>        <parameter key="population_size" value="5"/><br>        <parameter key="keep_best" value="true"/><br>        <parameter key="mutation_type" value="gaussian_mutation"/><br>        <parameter key="selection_type" value="tournament"/><br>        <parameter key="tournament_fraction" value="0.25"/><br>        <parameter key="crossover_prob" value="0.9"/><br>        <parameter key="use_local_random_seed" value="false"/><br>        <parameter key="local_random_seed" value="1992"/><br>        <parameter key="show_convergence_plot" value="false"/><br>        <process expanded="true"><br>          <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Validation" width="90" x="313" y="34"><br>            <parameter key="split_on_batch_attribute" value="false"/><br>            <parameter key="leave_one_out" value="false"/><br>            <parameter key="number_of_folds" value="10"/><br>            <parameter key="sampling_type" value="stratified sampling"/><br>            <parameter key="use_local_random_seed" value="false"/><br>            <parameter key="local_random_seed" value="1992"/><br>            <parameter key="enable_parallel_execution" value="true"/><br>            <process expanded="true"><br>              <operator activated="true" class="concurrency:parallel_random_forest" compatibility="9.1.000" expanded="true" height="103" name="Random Forest" width="90" x="179" y="34"><br>                <parameter key="number_of_trees" value="68"/><br>                <parameter key="criterion" value="gain_ratio"/><br>                <parameter key="maximal_depth" value="10"/><br>                <parameter key="apply_pruning" value="false"/><br>                <parameter key="confidence" value="0.1"/><br>                <parameter key="apply_prepruning" value="false"/><br>                <parameter key="minimal_gain" value="0.01"/><br>                <parameter key="minimal_leaf_size" value="1"/><br>                <parameter key="minimal_size_for_split" value="48"/><br>                <parameter key="number_of_prepruning_alternatives" value="3"/><br>                <parameter key="random_splits" value="false"/><br>                <parameter key="guess_subset_ratio" value="true"/><br>                <parameter key="subset_ratio" value="0.2"/><br>                <parameter key="voting_strategy" value="confidence vote"/><br>                <parameter key="use_local_random_seed" value="false"/><br>                <parameter key="local_random_seed" value="1992"/><br>                <parameter key="enable_parallel_execution" value="true"/><br>              </operator><br>              <connect from_port="training set" to_op="Random Forest" to_port="training set"/><br>              <connect from_op="Random Forest" from_port="model" to_port="model"/><br>              <portSpacing port="source_training set" spacing="0"/><br>              <portSpacing port="sink_model" spacing="0"/><br>              <portSpacing port="sink_through 1" spacing="0"/><br>              <description align="left" color="green" colored="true" height="80" resized="true" width="248" x="99" y="168">In the training phase, a model is built on the current training data set. (90 % of data by default, 10 times)</description><br>            </process><br>            <process expanded="true"><br>              <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34"><br>                <list key="application_parameters"/><br>                <parameter key="create_view" value="false"/><br>              </operator><br>              <operator activated="true" class="performance" compatibility="9.1.000" expanded="true" height="82" name="Performance" width="90" x="179" y="34"><br>                <parameter key="use_example_weights" value="true"/><br>              </operator><br>              <connect from_port="model" to_op="Apply Model" to_port="model"/><br>              <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/><br>              <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/><br>              <connect from_op="Performance" from_port="performance" to_port="performance 1"/><br>              <connect from_op="Performance" from_port="example set" to_port="test set results"/><br>              <portSpacing port="source_model" spacing="0"/><br>              <portSpacing port="source_test set" spacing="0"/><br>              <portSpacing port="source_through 1" spacing="0"/><br>              <portSpacing port="sink_test set results" spacing="0"/><br>              <portSpacing port="sink_performance 1" spacing="0"/><br>              <portSpacing port="sink_performance 2" spacing="0"/><br>              <description align="left" color="blue" colored="true" height="103" resized="true" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).&lt;br/&gt;The performance is evaluated and sent to the operator results.</description><br>            </process><br>            <description align="center" color="transparent" colored="false" width="126">A cross-validation evaluating a decision tree model.</description><br>          </operator><br>          <connect from_port="input 1" to_op="Validation" to_port="example set"/><br>          <connect from_op="Validation" from_port="model" to_port="result 1"/><br>          <connect from_op="Validation" from_port="performance 1" to_port="performance"/><br>          <portSpacing port="source_input 1" spacing="0"/><br>          <portSpacing port="source_input 2" spacing="0"/><br>          <portSpacing port="sink_performance" spacing="0"/><br>          <portSpacing port="sink_result 1" spacing="0"/><br>          <portSpacing port="sink_result 2" spacing="0"/><br>        </process><br>      </operator><br>      <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="514" y="289"><br>        <list key="application_parameters"/><br>        <parameter key="create_view" value="false"/><br>      </operator><br>      <operator activated="true" class="performance_binominal_classification" compatibility="9.1.000" expanded="true" height="82" name="Performance (2)" width="90" x="782" y="34"><br>        <parameter key="main_criterion" value="first"/><br>        <parameter key="accuracy" value="true"/><br>        <parameter key="classification_error" value="false"/><br>        <parameter key="kappa" value="false"/><br>        <parameter key="AUC (optimistic)" value="false"/><br>        <parameter key="AUC" value="false"/><br>        <parameter key="AUC (pessimistic)" value="false"/><br>        <parameter key="precision" value="false"/><br>        <parameter key="recall" value="false"/><br>        <parameter key="lift" value="false"/><br>        <parameter key="fallout" value="false"/><br>        <parameter key="f_measure" value="false"/><br>        <parameter key="false_positive" value="false"/><br>        <parameter key="false_negative" value="false"/><br>        <parameter key="true_positive" value="false"/><br>        <parameter key="true_negative" value="false"/><br>        <parameter key="sensitivity" value="false"/><br>        <parameter key="specificity" value="false"/><br>        <parameter key="youden" value="false"/><br>        <parameter key="positive_predictive_value" value="false"/><br>        <parameter key="negative_predictive_value" value="false"/><br>        <parameter key="psep" value="false"/><br>        <parameter key="skip_undefined_labels" value="true"/><br>        <parameter key="use_example_weights" value="true"/><br>      </operator><br>      <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Split Data" to_port="example set"/><br>      <connect from_op="Split Data" from_port="partition 1" to_op="Optimize Parameters (Evolutionary)" to_port="input 1"/><br>      <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model (2)" to_port="unlabelled data"/><br>      <connect from_op="Optimize Parameters (Evolutionary)" from_port="result 1" to_op="Apply Model (2)" to_port="model"/><br>      <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/><br>      <connect from_op="Performance (2)" from_port="performance" to_port="result 1"/><br>      <portSpacing port="source_input 1" spacing="0"/><br>      <portSpacing port="sink_result 1" spacing="0"/><br>      <portSpacing port="sink_result 2" spacing="0"/><br>    </process><br>  </operator><br></process><br><br>

    Example 2: External cross validation
    <?xml version="1.0" encoding="UTF-8"?><process version="9.1.000"><br>  <context><br>    <input/><br>    <output/><br>    <macros/><br>  </context><br>  <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process"><br>    <parameter key="logverbosity" value="init"/><br>    <parameter key="random_seed" value="2001"/><br>    <parameter key="send_mail" value="never"/><br>    <parameter key="notification_email" value=""/><br>    <parameter key="process_duration_for_mail" value="30"/><br>    <parameter key="encoding" value="SYSTEM"/><br>    <process expanded="true"><br>      <operator activated="true" class="retrieve" compatibility="9.1.000" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="112" y="85"><br>        <parameter key="repository_entry" value="//Samples/data/Titanic Training"/><br>      </operator><br>      <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Validation (2)" width="90" x="447" y="85"><br>        <parameter key="split_on_batch_attribute" value="false"/><br>        <parameter key="leave_one_out" value="false"/><br>        <parameter key="number_of_folds" value="5"/><br>        <parameter key="sampling_type" value="stratified sampling"/><br>        <parameter key="use_local_random_seed" value="false"/><br>        <parameter key="local_random_seed" value="1992"/><br>        <parameter key="enable_parallel_execution" value="true"/><br>        <process expanded="true"><br>          <operator activated="true" class="optimize_parameters_evolutionary" compatibility="9.1.000" expanded="true" height="124" name="Optimize Parameters (Evolutionary)" width="90" x="179" y="34"><br>            <list key="parameters"><br>              <parameter key="Random Forest.number_of_trees" value="[1.0;100.0]"/><br>              <parameter key="Random Forest.minimal_leaf_size" value="[1.0;100.0]"/><br>              <parameter key="Random Forest.minimal_size_for_split" value="[1.0;100.0]"/><br>            </list><br>            <parameter key="error_handling" value="fail on error"/><br>            <parameter key="max_generations" value="50"/><br>            <parameter key="use_early_stopping" value="false"/><br>            <parameter key="generations_without_improval" value="2"/><br>            <parameter key="specify_population_size" value="true"/><br>            <parameter key="population_size" value="5"/><br>            <parameter key="keep_best" value="true"/><br>            <parameter key="mutation_type" value="gaussian_mutation"/><br>            <parameter key="selection_type" value="tournament"/><br>            <parameter key="tournament_fraction" value="0.25"/><br>            <parameter key="crossover_prob" value="0.9"/><br>            <parameter key="use_local_random_seed" value="false"/><br>            <parameter key="local_random_seed" value="1992"/><br>            <parameter key="show_convergence_plot" value="false"/><br>            <process expanded="true"><br>              <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Validation" width="90" x="313" y="34"><br>                <parameter key="split_on_batch_attribute" value="false"/><br>                <parameter key="leave_one_out" value="false"/><br>                <parameter key="number_of_folds" value="5"/><br>                <parameter key="sampling_type" value="stratified sampling"/><br>                <parameter key="use_local_random_seed" value="false"/><br>                <parameter key="local_random_seed" value="1992"/><br>                <parameter key="enable_parallel_execution" value="true"/><br>                <process expanded="true"><br>                  <operator activated="true" class="concurrency:parallel_random_forest" compatibility="9.1.000" expanded="true" height="103" name="Random Forest" width="90" x="179" y="34"><br>                    <parameter key="number_of_trees" value="68"/><br>                    <parameter key="criterion" value="gain_ratio"/><br>                    <parameter key="maximal_depth" value="10"/><br>                    <parameter key="apply_pruning" value="false"/><br>                    <parameter key="confidence" value="0.1"/><br>                    <parameter key="apply_prepruning" value="false"/><br>                    <parameter key="minimal_gain" value="0.01"/><br>                    <parameter key="minimal_leaf_size" value="1"/><br>                    <parameter key="minimal_size_for_split" value="48"/><br>                    <parameter key="number_of_prepruning_alternatives" value="3"/><br>                    <parameter key="random_splits" value="false"/><br>                    <parameter key="guess_subset_ratio" value="true"/><br>                    <parameter key="subset_ratio" value="0.2"/><br>                    <parameter key="voting_strategy" value="confidence vote"/><br>                    <parameter key="use_local_random_seed" value="false"/><br>                    <parameter key="local_random_seed" value="1992"/><br>                    <parameter key="enable_parallel_execution" value="true"/><br>                  </operator><br>                  <connect from_port="training set" to_op="Random Forest" to_port="training set"/><br>                  <connect from_op="Random Forest" from_port="model" to_port="model"/><br>                  <portSpacing port="source_training set" spacing="0"/><br>                  <portSpacing port="sink_model" spacing="0"/><br>                  <portSpacing port="sink_through 1" spacing="0"/><br>                  <description align="left" color="green" colored="true" height="80" resized="false" width="248" x="99" y="168">In the training phase, a model is built on the current training data set. (90 % of data by default, 10 times)</description><br>                </process><br>                <process expanded="true"><br>                  <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34"><br>                    <list key="application_parameters"/><br>                    <parameter key="create_view" value="false"/><br>                  </operator><br>                  <operator activated="true" class="performance" compatibility="9.1.000" expanded="true" height="82" name="Performance" width="90" x="179" y="34"><br>                    <parameter key="use_example_weights" value="true"/><br>                  </operator><br>                  <connect from_port="model" to_op="Apply Model" to_port="model"/><br>                  <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/><br>                  <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/><br>                  <connect from_op="Performance" from_port="performance" to_port="performance 1"/><br>                  <connect from_op="Performance" from_port="example set" to_port="test set results"/><br>                  <portSpacing port="source_model" spacing="0"/><br>                  <portSpacing port="source_test set" spacing="0"/><br>                  <portSpacing port="source_through 1" spacing="0"/><br>                  <portSpacing port="sink_test set results" spacing="0"/><br>                  <portSpacing port="sink_performance 1" spacing="0"/><br>                  <portSpacing port="sink_performance 2" spacing="0"/><br>                  <description align="left" color="blue" colored="true" height="103" resized="false" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).&lt;br/&gt;The performance is evaluated and sent to the operator results.</description><br>                </process><br>                <description align="center" color="transparent" colored="false" width="126">A cross-validation evaluating a decision tree model.</description><br>              </operator><br>              <connect from_port="input 1" to_op="Validation" to_port="example set"/><br>              <connect from_op="Validation" from_port="model" to_port="result 1"/><br>              <connect from_op="Validation" from_port="performance 1" to_port="performance"/><br>              <portSpacing port="source_input 1" spacing="0"/><br>              <portSpacing port="source_input 2" spacing="0"/><br>              <portSpacing port="sink_performance" spacing="0"/><br>              <portSpacing port="sink_result 1" spacing="0"/><br>              <portSpacing port="sink_result 2" spacing="0"/><br>            </process><br>          </operator><br>          <connect from_port="training set" to_op="Optimize Parameters (Evolutionary)" to_port="input 1"/><br>          <connect from_op="Optimize Parameters (Evolutionary)" from_port="result 1" to_port="model"/><br>          <portSpacing port="source_training set" spacing="0"/><br>          <portSpacing port="sink_model" spacing="0"/><br>          <portSpacing port="sink_through 1" spacing="0"/><br>        </process><br>        <process expanded="true"><br>          <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="45" y="34"><br>            <list key="application_parameters"/><br>            <parameter key="create_view" value="false"/><br>          </operator><br>          <operator activated="true" class="performance" compatibility="9.1.000" expanded="true" height="82" name="Performance (2)" width="90" x="179" y="34"><br>            <parameter key="use_example_weights" value="true"/><br>          </operator><br>          <connect from_port="model" to_op="Apply Model (2)" to_port="model"/><br>          <connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/><br>          <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/><br>          <connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/><br>          <connect from_op="Performance (2)" from_port="example set" to_port="test set results"/><br>          <portSpacing port="source_model" spacing="0"/><br>          <portSpacing port="source_test set" spacing="0"/><br>          <portSpacing port="source_through 1" spacing="0"/><br>          <portSpacing port="sink_test set results" spacing="0"/><br>          <portSpacing port="sink_performance 1" spacing="0"/><br>          <portSpacing port="sink_performance 2" spacing="0"/><br>          <description align="left" color="blue" colored="true" height="103" resized="true" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).&lt;br/&gt;The performance is evaluated and sent to the operator results.</description><br>        </process><br>        <description align="center" color="transparent" colored="false" width="126">A cross-validation evaluating a decision tree model.</description><br>      </operator><br>      <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Validation (2)" to_port="example set"/><br>      <connect from_op="Validation (2)" from_port="performance 1" to_port="result 1"/><br>      <portSpacing port="source_input 1" spacing="0"/><br>      <portSpacing port="sink_result 1" spacing="0"/><br>      <portSpacing port="sink_result 2" spacing="0"/><br>    </process><br>  </operator><br></process><br><br>


  • sgenzersgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager
    Seems like no one chimed in for the second question about a "low quality" operator. This would be the new "Automatic Feature Engineering" operator. :smiley: Give it a try.

    Scott

Sign In or Register to comment.