The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"Can I get multiple predictions using Neural Network?"
I am trying to create a Neural Net that can predict more than one output. The training set is [0,0,0,0,a,a] and the predicted output must come from another input such as [0,0,0,0] and predict [a,a]. My program is currently working but it will only show the predicted output of the labeled column of choice. I wanted to know if there is a possibility of there been more than 1 output at the same time.
I already tried to use loop labels but to no success. Am I missing something? Thanks.
edit:This is the code
<?xml version="1.0" encoding="UTF-8"?><process version="9.1.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.1.000" expanded="true" height="68" name="Retrieve Testing Pls" width="90" x="45" y="34"> <parameter key="repository_entry" value="//Local Repository/data/Testing Pls"/> </operator> <operator activated="true" class="set_role" compatibility="9.1.000" expanded="true" height="82" name="Set Role" width="90" x="112" y="187"> <parameter key="attribute_name" value="b1"/> <parameter key="target_role" value="label"/> <list key="set_additional_roles"> <parameter key="b2" value="label"/> <parameter key="b3" value="label"/> </list> </operator> <operator activated="true" class="multiply" compatibility="9.1.000" expanded="true" height="103" name="Multiply" width="90" x="313" y="187"/> <operator activated="true" class="filter_examples" compatibility="9.1.000" expanded="true" height="103" name="Filter Examples (2)" width="90" x="514" y="238"> <parameter key="parameter_expression" value=""/> <parameter key="condition_class" value="custom_filters"/> <parameter key="invert_filter" value="false"/> <list key="filters_list"> <parameter key="filters_entry_key" value="b1.is_missing."/> <parameter key="filters_entry_key" value="b2.is_missing."/> <parameter key="filters_entry_key" value="b3.is_missing."/> </list> <parameter key="filters_logic_and" value="true"/> <parameter key="filters_check_metadata" value="true"/> </operator> <operator activated="true" class="filter_examples" compatibility="9.1.000" expanded="true" height="103" name="Filter Examples" width="90" x="447" y="34"> <parameter key="parameter_expression" value=""/> <parameter key="condition_class" value="custom_filters"/> <parameter key="invert_filter" value="false"/> <list key="filters_list"> <parameter key="filters_entry_key" value="b1.is_not_missing."/> <parameter key="filters_entry_key" value="b2.is_not_missing."/> <parameter key="filters_entry_key" value="b3.is_not_missing."/> </list> <parameter key="filters_logic_and" value="true"/> <parameter key="filters_check_metadata" value="true"/> </operator> <operator activated="true" class="neural_net" compatibility="9.1.000" expanded="true" height="82" name="Neural Net" width="90" x="581" y="34"> <list key="hidden_layers"> <parameter key="h1" value="4"/> </list> <parameter key="training_cycles" value="200"/> <parameter key="learning_rate" value="0.01"/> <parameter key="momentum" value="0.9"/> <parameter key="decay" value="false"/> <parameter key="shuffle" value="true"/> <parameter key="normalize" value="true"/> <parameter key="error_epsilon" value="1.0E-4"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="715" y="136"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <connect from_op="Retrieve Testing Pls" from_port="output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Filter Examples" to_port="example set input"/> <connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (2)" to_port="example set input"/> <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Filter Examples" from_port="example set output" to_op="Neural Net" to_port="training set"/> <connect from_op="Neural Net" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> </process>
Tagged:
0
Answers
Can you post you XML code and dataset so that we can see what you are tring to do? Sorry, i am bit confused, what do you mean by having more than one output at same time? Can you provide simple example what you are trying to get? Are you trying to look at the probability of each class for the same sample?
In case if you are new, you can find XML code in (View --> Show Panel --> XML) in menu bar. Copy the whole code and paste here by selecting as shown below.
Thanks
Varun
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Did you place, the neural net inside loop label operator. Can you provide dataset if possible so that we can see why it's not working? Are you getting any error or are you unable to see two labels you want to predict?
Thanks,
Varun
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing