The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

"Algorithm in Cross Validation keep on processing"

varunm1varunm1 Member Posts: 1,207 Unicorn
edited May 2019 in Help
Hi,

I am trying to do cross-validation 5 fold, but the SVM and Logistic regression operators in CV keep on processing as shown in the figure below. Its been 10 hours and they are same. The dataset size is 316974 samples with 40 attributes. XML below. Is this due to dataset size? Generally, it needs to show some percentage of completion but it keeps on processing without change.





<?xml version="1.0" encoding="UTF-8"?><process version="9.1.000">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="9.1.000" expanded="true" height="68" name="Retrieve Assistment_Data_Feature_Selection" width="90" x="45" y="136">
        <parameter key="repository_entry" value="../../data/AIED_New/Assistment_Data_Feature_Selection"/>
      </operator>
      <operator activated="true" class="select_attributes" compatibility="9.1.000" expanded="true" height="82" name="Select Attributes" width="90" x="246" y="136">
        <parameter key="attribute_filter_type" value="subset"/>
        <parameter key="attribute" value=""/>
        <parameter key="attributes" value="Ln|Ln-1|NumActions|RES_BORED|RES_CONFUSED|RES_FRUSTRATED|RES_GAMING|RES_OFFTASK|Skill_ID|attemptCount|correct|endsWithScaffolding|frIsHelpRequest|frIsHelpRequestScaffolding|frPast5HelpRequest|frPast5WrongCount|frPast8HelpRequest|frPast8WrongCount|frTotalSkillOpportunitiesScaffolding|hint|hintCount|hintTotal|manywrong|original|past8BottomOut|scaffold|sumRight|sumTimePerSkill|timeGreater10SecAndNextActionRight|timeSinceSkill|timeTaken|totalFrAttempted|totalFrPastWrongCount|totalFrPercentPastWrong|totalFrSkillOpportunities|totalFrSkillOpportunitiesByScaffolding|totalFrTimeOnSkill|totalTimeByPercentCorrectForskill"/>
        <parameter key="use_except_expression" value="false"/>
        <parameter key="value_type" value="attribute_value"/>
        <parameter key="use_value_type_exception" value="false"/>
        <parameter key="except_value_type" value="time"/>
        <parameter key="block_type" value="attribute_block"/>
        <parameter key="use_block_type_exception" value="false"/>
        <parameter key="except_block_type" value="value_matrix_row_start"/>
        <parameter key="invert_selection" value="false"/>
        <parameter key="include_special_attributes" value="false"/>
      </operator>
      <operator activated="true" class="multiply" compatibility="9.1.000" expanded="true" height="82" name="Multiply" width="90" x="380" y="34"/>
      <operator activated="true" class="concurrency:cross_validation" compatibility="9.1.000" expanded="true" height="166" name="Cross Validation" width="90" x="581" y="136">
        <parameter key="split_on_batch_attribute" value="false"/>
        <parameter key="leave_one_out" value="false"/>
        <parameter key="number_of_folds" value="5"/>
        <parameter key="sampling_type" value="automatic"/>
        <parameter key="use_local_random_seed" value="true"/>
        <parameter key="local_random_seed" value="1992"/>
        <parameter key="enable_parallel_execution" value="true"/>
        <process expanded="true">
          <operator activated="true" class="support_vector_machine" compatibility="9.1.000" expanded="true" height="124" name="SVM" width="90" x="112" y="85">
            <parameter key="kernel_type" value="dot"/>
            <parameter key="kernel_gamma" value="1.0"/>
            <parameter key="kernel_sigma1" value="1.0"/>
            <parameter key="kernel_sigma2" value="0.0"/>
            <parameter key="kernel_sigma3" value="2.0"/>
            <parameter key="kernel_shift" value="1.0"/>
            <parameter key="kernel_degree" value="2.0"/>
            <parameter key="kernel_a" value="1.0"/>
            <parameter key="kernel_b" value="0.0"/>
            <parameter key="kernel_cache" value="200"/>
            <parameter key="C" value="0.0"/>
            <parameter key="convergence_epsilon" value="0.001"/>
            <parameter key="max_iterations" value="100000"/>
            <parameter key="scale" value="true"/>
            <parameter key="calculate_weights" value="true"/>
            <parameter key="return_optimization_performance" value="true"/>
            <parameter key="L_pos" value="1.0"/>
            <parameter key="L_neg" value="1.0"/>
            <parameter key="epsilon" value="0.0"/>
            <parameter key="epsilon_plus" value="0.0"/>
            <parameter key="epsilon_minus" value="0.0"/>
            <parameter key="balance_cost" value="false"/>
            <parameter key="quadratic_loss_pos" value="false"/>
            <parameter key="quadratic_loss_neg" value="false"/>
            <parameter key="estimate_performance" value="false"/>
          </operator>
          <connect from_port="training set" to_op="SVM" to_port="training set"/>
          <connect from_op="SVM" from_port="model" to_port="model"/>
          <portSpacing port="source_training set" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="9.1.000" expanded="true" height="103" name="Multiply (2)" width="90" x="45" y="136"/>
          <operator activated="true" class="performance" compatibility="9.1.000" expanded="true" height="82" name="Performance" width="90" x="179" y="238">
            <parameter key="use_example_weights" value="true"/>
          </operator>
          <operator activated="true" class="performance_classification" compatibility="9.1.000" expanded="true" height="82" name="Performance (2)" width="90" x="246" y="34">
            <parameter key="main_criterion" value="first"/>
            <parameter key="accuracy" value="true"/>
            <parameter key="classification_error" value="false"/>
            <parameter key="kappa" value="true"/>
            <parameter key="weighted_mean_recall" value="false"/>
            <parameter key="weighted_mean_precision" value="false"/>
            <parameter key="spearman_rho" value="false"/>
            <parameter key="kendall_tau" value="false"/>
            <parameter key="absolute_error" value="false"/>
            <parameter key="relative_error" value="false"/>
            <parameter key="relative_error_lenient" value="false"/>
            <parameter key="relative_error_strict" value="false"/>
            <parameter key="normalized_absolute_error" value="false"/>
            <parameter key="root_mean_squared_error" value="true"/>
            <parameter key="root_relative_squared_error" value="false"/>
            <parameter key="squared_error" value="false"/>
            <parameter key="correlation" value="false"/>
            <parameter key="squared_correlation" value="false"/>
            <parameter key="cross-entropy" value="false"/>
            <parameter key="margin" value="false"/>
            <parameter key="soft_margin_loss" value="false"/>
            <parameter key="logistic_loss" value="false"/>
            <parameter key="skip_undefined_labels" value="true"/>
            <parameter key="use_example_weights" value="true"/>
            <list key="class_weights"/>
          </operator>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Multiply (2)" to_port="input"/>
          <connect from_op="Multiply (2)" from_port="output 1" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Multiply (2)" from_port="output 2" to_op="Performance (2)" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="performance 2"/>
          <connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_test set results" spacing="0"/>
          <portSpacing port="sink_performance 1" spacing="0"/>
          <portSpacing port="sink_performance 2" spacing="0"/>
          <portSpacing port="sink_performance 3" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Retrieve Assistment_Data_Feature_Selection" from_port="output" to_op="Select Attributes" to_port="example set input"/>
      <connect from_op="Select Attributes" from_port="example set output" to_op="Multiply" to_port="input"/>
      <connect from_op="Multiply" from_port="output 1" to_op="Cross Validation" to_port="example set"/>
      <connect from_op="Cross Validation" from_port="performance 1" to_port="result 1"/>
      <connect from_op="Cross Validation" from_port="performance 2" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>

Thanks,
Varun
Regards,
Varun
https://www.varunmandalapu.com/

Be Safe. Follow precautions and Maintain Social Distancing

Best Answer

Answers

  • varunm1varunm1 Member Posts: 1,207 Unicorn
    @mschmitz yes. That is what I was thinking, I killed with Task Manager.
    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • Telcontar120Telcontar120 RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 1,635 Unicorn
    I'd try a 10% sample first and see if you get a reasonable model at all with these algorithms.  I cannot say enough how useful it is to take a 1% to 10% sample as a starting point if you are dealing with large datasets.  It saves a lot of headaches later!

    Brian T.
    Lindon Ventures 
    Data Science Consulting from Certified RapidMiner Experts
  • varunm1varunm1 Member Posts: 1,207 Unicorn
    Thanks @Telcontar120 I did try it in with few samples and SVM doesn't look good. 
    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
    keep in mind that you need to tune C of an SVM very carefully (+ kernel parameters).

    BR,
    Martin
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
Sign In or Register to comment.