The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

"Deep learning extension : Questions and Warnings in the process"

lionelderkrikorlionelderkrikor RapidMiner Certified Analyst, Member Posts: 1,195 Unicorn
edited May 2019 in Help
Hi all,

I'm using the new Deep Learning extension (TS to Tensor and Deep Learning (Tensor) operators) in a binary classification project.
The dataset is composed of a collection of 4 examples set. Each example set has 5 attributes (4 regular attributes + target) and 800000 rows.
The target has the same value (0 or 1) for a given example set : 


1. When I'm executing the process, the process duration is around 5 hours ! ...( I have a laptop 4 x 2.5 GHz / 16 Go RAM / Windows 10).
My questions are:
  • Is it the normal expected time ?
  • If yes, what do you recommend me, knowing that I'm performing just preliminary tests (The whole dataset has in reality 2904 example sets !)
          to have relevant results in an "acceptable" time ?  maybe Cloud (AWS) solutions ?

2. As a workaround I'm using the Sample operator to reduce the number of rows from 800000 -> 1000 and in fine decrease significantly the computation time. But when executed, the process raises some "warnings" in the Log : 
"Couldn't update the network in epoch 1" 
"Couldn't update the network in epoch 2" 
"Couldn't update the network in epoch 3" 
                             .
 "Couldn't update the network in epoch N"  

Can you explain this behaviour ? What I have to do in my proces to avoid that ?

Regards,

Lionel

NB :  the data : 
 - the 4 example sets (files signal_x_target_y) to store in a directory to set in the Loop Files operator : 
https://drive.google.com/open?id=1tNHkk-N7HVivWmDKaByEIXyk_8UKZU3R

 - the file metadata_train.csv to feed the Read CSV operator inside the Loop Collection operator : 
https://drive.google.com/open?id=1oTXFeb60FfpjlG7b46aSIwfkcCe7NCZ_

NB2 : The process : 
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000-RC">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.2.000-RC" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="concurrency:loop_files" compatibility="9.2.000-RC" expanded="true" height="82" name="Loop Files" width="90" x="45" y="85">
        <parameter key="directory" value="D:\Lionel\Data_sciences\Competitions\all\Data"/>
        <parameter key="filter_type" value="glob"/>
        <parameter key="recursive" value="false"/>
        <parameter key="enable_macros" value="false"/>
        <parameter key="macro_for_file_name" value="file_name"/>
        <parameter key="macro_for_file_type" value="file_type"/>
        <parameter key="macro_for_folder_name" value="folder_name"/>
        <parameter key="reuse_results" value="false"/>
        <parameter key="enable_parallel_execution" value="true"/>
        <process expanded="true">
          <operator activated="true" class="read_csv" compatibility="9.2.000-RC" expanded="true" height="68" name="Read CSV" width="90" x="246" y="85">
            <parameter key="column_separators" value=","/>
            <parameter key="trim_lines" value="false"/>
            <parameter key="use_quotes" value="true"/>
            <parameter key="quotes_character" value="&quot;"/>
            <parameter key="escape_character" value="\"/>
            <parameter key="skip_comments" value="false"/>
            <parameter key="comment_characters" value="#"/>
            <parameter key="starting_row" value="1"/>
            <parameter key="parse_numbers" value="true"/>
            <parameter key="decimal_character" value="."/>
            <parameter key="grouped_digits" value="false"/>
            <parameter key="grouping_character" value=","/>
            <parameter key="infinity_representation" value=""/>
            <parameter key="date_format" value=""/>
            <parameter key="first_row_as_names" value="true"/>
            <list key="annotations"/>
            <parameter key="time_zone" value="SYSTEM"/>
            <parameter key="locale" value="English (United States)"/>
            <parameter key="encoding" value="SYSTEM"/>
            <parameter key="read_all_values_as_polynominal" value="false"/>
            <list key="data_set_meta_data_information"/>
            <parameter key="read_not_matching_values_as_missings" value="true"/>
            <parameter key="datamanagement" value="double_array"/>
            <parameter key="data_management" value="auto"/>
          </operator>
          <connect from_port="file object" to_op="Read CSV" to_port="file"/>
          <connect from_op="Read CSV" from_port="output" to_port="output 1"/>
          <portSpacing port="source_file object" spacing="0"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_output 1" spacing="0"/>
          <portSpacing port="sink_output 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" breakpoints="after" class="loop_collection" compatibility="9.2.000-RC" expanded="true" height="82" name="Loop Collection" width="90" x="179" y="85">
        <parameter key="set_iteration_macro" value="true"/>
        <parameter key="macro_name" value="iteration"/>
        <parameter key="macro_start_value" value="0"/>
        <parameter key="unfold" value="false"/>
        <process expanded="true">
          <operator activated="true" class="read_csv" compatibility="9.2.000-RC" expanded="true" height="68" name="Read CSV (2)" width="90" x="112" y="187">
            <parameter key="csv_file" value="D:\Lionel\Data_sciences\Competitions\all\metadata_train.csv"/>
            <parameter key="column_separators" value=","/>
            <parameter key="trim_lines" value="false"/>
            <parameter key="use_quotes" value="true"/>
            <parameter key="quotes_character" value="&quot;"/>
            <parameter key="escape_character" value="\"/>
            <parameter key="skip_comments" value="false"/>
            <parameter key="comment_characters" value="#"/>
            <parameter key="starting_row" value="1"/>
            <parameter key="parse_numbers" value="true"/>
            <parameter key="decimal_character" value="."/>
            <parameter key="grouped_digits" value="false"/>
            <parameter key="grouping_character" value=","/>
            <parameter key="infinity_representation" value=""/>
            <parameter key="date_format" value=""/>
            <parameter key="first_row_as_names" value="true"/>
            <list key="annotations"/>
            <parameter key="time_zone" value="SYSTEM"/>
            <parameter key="locale" value="English (United States)"/>
            <parameter key="encoding" value="SYSTEM"/>
            <parameter key="read_all_values_as_polynominal" value="false"/>
            <list key="data_set_meta_data_information"/>
            <parameter key="read_not_matching_values_as_missings" value="true"/>
            <parameter key="datamanagement" value="double_array"/>
            <parameter key="data_management" value="auto"/>
          </operator>
          <operator activated="true" class="python_scripting:execute_python" compatibility="9.1.000" expanded="true" height="124" name="Execute Python" width="90" x="246" y="85">
            <parameter key="script" value="import pandas as pd&#10;&#10;# rm_main is a mandatory function, &#10;# the number of arguments has to be the number of input ports (can be none)&#10;def rm_main(data,data_2):&#10;&#10;  data['target'] = data_2['target'][3*%{iteration}]&#10;  &#10;  data.rm_metadata[&quot;target&quot;]=(None,'label')&#10;    # connect 2 output ports to see the results&#10;  return data"/>
            <parameter key="use_default_python" value="true"/>
            <parameter key="package_manager" value="conda (anaconda)"/>
          </operator>
          <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing" width="90" x="514" y="85">
            <parameter key="attribute_filter_type" value="regular_expression"/>
            <parameter key="attribute" value=""/>
            <parameter key="attributes" value=""/>
            <parameter key="regular_expression" value="att.*"/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="false"/>
            <parameter key="replace_what" value="att"/>
          </operator>
          <operator activated="true" class="concurrency:loop_attributes" compatibility="9.2.000-RC" expanded="true" height="82" name="Loop Attributes" width="90" x="648" y="85">
            <parameter key="attribute_filter_type" value="regular_expression"/>
            <parameter key="attribute" value=""/>
            <parameter key="attributes" value=""/>
            <parameter key="regular_expression" value="target"/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="true"/>
            <parameter key="include_special_attributes" value="false"/>
            <parameter key="attribute_name_macro" value="loop_attribute"/>
            <parameter key="reuse_results" value="true"/>
            <parameter key="enable_parallel_execution" value="true"/>
            <process expanded="true">
              <operator activated="true" class="branch" compatibility="9.2.000-RC" expanded="true" height="103" name="Branch" width="90" x="246" y="34">
                <parameter key="condition_type" value="expression"/>
                <parameter key="expression" value="eval(%{loop_attribute})%3==0 &amp;&amp; %{loop_attribute}!=0 &amp;&amp; %{loop_attribute}!=1&amp;&amp; %{loop_attribute}!=2"/>
                <parameter key="io_object" value="ANOVAMatrix"/>
                <parameter key="return_inner_output" value="true"/>
                <process expanded="true">
                  <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing (2)" width="90" x="179" y="136">
                    <parameter key="attribute_filter_type" value="all"/>
                    <parameter key="attribute" value=""/>
                    <parameter key="attributes" value=""/>
                    <parameter key="regular_expression" value="0|1|2"/>
                    <parameter key="use_except_expression" value="false"/>
                    <parameter key="value_type" value="attribute_value"/>
                    <parameter key="use_value_type_exception" value="false"/>
                    <parameter key="except_value_type" value="time"/>
                    <parameter key="block_type" value="attribute_block"/>
                    <parameter key="use_block_type_exception" value="false"/>
                    <parameter key="except_block_type" value="value_matrix_row_start"/>
                    <parameter key="invert_selection" value="false"/>
                    <parameter key="include_special_attributes" value="false"/>
                    <parameter key="replace_what" value="%{loop_attribute}"/>
                    <parameter key="replace_by" value="0"/>
                  </operator>
                  <connect from_port="condition" to_port="input 1"/>
                  <connect from_port="input 1" to_op="Rename by Replacing (2)" to_port="example set input"/>
                  <connect from_op="Rename by Replacing (2)" from_port="example set output" to_port="input 2"/>
                  <portSpacing port="source_condition" spacing="0"/>
                  <portSpacing port="source_input 1" spacing="0"/>
                  <portSpacing port="source_input 2" spacing="0"/>
                  <portSpacing port="sink_input 1" spacing="0"/>
                  <portSpacing port="sink_input 2" spacing="0"/>
                  <portSpacing port="sink_input 3" spacing="0"/>
                </process>
                <process expanded="true">
                  <connect from_port="condition" to_port="input 1"/>
                  <connect from_port="input 1" to_port="input 2"/>
                  <portSpacing port="source_condition" spacing="0"/>
                  <portSpacing port="source_input 1" spacing="0"/>
                  <portSpacing port="source_input 2" spacing="0"/>
                  <portSpacing port="sink_input 1" spacing="0"/>
                  <portSpacing port="sink_input 2" spacing="0"/>
                  <portSpacing port="sink_input 3" spacing="0"/>
                </process>
              </operator>
              <operator activated="true" class="branch" compatibility="9.2.000-RC" expanded="true" height="103" name="Branch (2)" width="90" x="447" y="34">
                <parameter key="condition_type" value="expression"/>
                <parameter key="expression" value="eval(%{loop_attribute})%3==1 &amp;&amp; %{loop_attribute}!=0 &amp;&amp; %{loop_attribute}!=1&amp;&amp; %{loop_attribute}!=2"/>
                <parameter key="io_object" value="ANOVAMatrix"/>
                <parameter key="return_inner_output" value="true"/>
                <process expanded="true">
                  <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing (3)" width="90" x="179" y="136">
                    <parameter key="attribute_filter_type" value="all"/>
                    <parameter key="attribute" value=""/>
                    <parameter key="attributes" value=""/>
                    <parameter key="regular_expression" value="0|1|2"/>
                    <parameter key="use_except_expression" value="false"/>
                    <parameter key="value_type" value="attribute_value"/>
                    <parameter key="use_value_type_exception" value="false"/>
                    <parameter key="except_value_type" value="time"/>
                    <parameter key="block_type" value="attribute_block"/>
                    <parameter key="use_block_type_exception" value="false"/>
                    <parameter key="except_block_type" value="value_matrix_row_start"/>
                    <parameter key="invert_selection" value="false"/>
                    <parameter key="include_special_attributes" value="false"/>
                    <parameter key="replace_what" value="%{loop_attribute}"/>
                    <parameter key="replace_by" value="1"/>
                  </operator>
                  <connect from_port="condition" to_port="input 1"/>
                  <connect from_port="input 1" to_op="Rename by Replacing (3)" to_port="example set input"/>
                  <connect from_op="Rename by Replacing (3)" from_port="example set output" to_port="input 2"/>
                  <portSpacing port="source_condition" spacing="0"/>
                  <portSpacing port="source_input 1" spacing="0"/>
                  <portSpacing port="source_input 2" spacing="0"/>
                  <portSpacing port="sink_input 1" spacing="0"/>
                  <portSpacing port="sink_input 2" spacing="0"/>
                  <portSpacing port="sink_input 3" spacing="0"/>
                </process>
                <process expanded="true">
                  <connect from_port="condition" to_port="input 1"/>
                  <connect from_port="input 1" to_port="input 2"/>
                  <portSpacing port="source_condition" spacing="0"/>
                  <portSpacing port="source_input 1" spacing="0"/>
                  <portSpacing port="source_input 2" spacing="0"/>
                  <portSpacing port="sink_input 1" spacing="0"/>
                  <portSpacing port="sink_input 2" spacing="0"/>
                  <portSpacing port="sink_input 3" spacing="0"/>
                </process>
              </operator>
              <operator activated="true" class="branch" compatibility="9.2.000-RC" expanded="true" height="103" name="Branch (3)" width="90" x="648" y="34">
                <parameter key="condition_type" value="expression"/>
                <parameter key="expression" value="eval(%{loop_attribute})%3==2 &amp;&amp; %{loop_attribute}!=0 &amp;&amp; %{loop_attribute}!=1&amp;&amp; %{loop_attribute}!=2"/>
                <parameter key="io_object" value="ANOVAMatrix"/>
                <parameter key="return_inner_output" value="true"/>
                <process expanded="true">
                  <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing (4)" width="90" x="179" y="136">
                    <parameter key="attribute_filter_type" value="all"/>
                    <parameter key="attribute" value=""/>
                    <parameter key="attributes" value=""/>
                    <parameter key="regular_expression" value="0|1|2"/>
                    <parameter key="use_except_expression" value="false"/>
                    <parameter key="value_type" value="attribute_value"/>
                    <parameter key="use_value_type_exception" value="false"/>
                    <parameter key="except_value_type" value="time"/>
                    <parameter key="block_type" value="attribute_block"/>
                    <parameter key="use_block_type_exception" value="false"/>
                    <parameter key="except_block_type" value="value_matrix_row_start"/>
                    <parameter key="invert_selection" value="false"/>
                    <parameter key="include_special_attributes" value="false"/>
                    <parameter key="replace_what" value="%{loop_attribute}"/>
                    <parameter key="replace_by" value="2"/>
                  </operator>
                  <connect from_port="condition" to_port="input 1"/>
                  <connect from_port="input 1" to_op="Rename by Replacing (4)" to_port="example set input"/>
                  <connect from_op="Rename by Replacing (4)" from_port="example set output" to_port="input 2"/>
                  <portSpacing port="source_condition" spacing="0"/>
                  <portSpacing port="source_input 1" spacing="0"/>
                  <portSpacing port="source_input 2" spacing="0"/>
                  <portSpacing port="sink_input 1" spacing="0"/>
                  <portSpacing port="sink_input 2" spacing="0"/>
                  <portSpacing port="sink_input 3" spacing="0"/>
                </process>
                <process expanded="true">
                  <connect from_port="condition" to_port="input 1"/>
                  <connect from_port="input 1" to_port="input 2"/>
                  <portSpacing port="source_condition" spacing="0"/>
                  <portSpacing port="source_input 1" spacing="0"/>
                  <portSpacing port="source_input 2" spacing="0"/>
                  <portSpacing port="sink_input 1" spacing="0"/>
                  <portSpacing port="sink_input 2" spacing="0"/>
                  <portSpacing port="sink_input 3" spacing="0"/>
                </process>
              </operator>
              <connect from_port="input 1" to_op="Branch" to_port="input 1"/>
              <connect from_op="Branch" from_port="input 2" to_op="Branch (2)" to_port="input 1"/>
              <connect from_op="Branch (2)" from_port="input 2" to_op="Branch (3)" to_port="input 1"/>
              <connect from_op="Branch (3)" from_port="input 2" to_port="output 1"/>
              <portSpacing port="source_input 1" spacing="0"/>
              <portSpacing port="source_input 2" spacing="0"/>
              <portSpacing port="sink_output 1" spacing="0"/>
              <portSpacing port="sink_output 2" spacing="0"/>
            </process>
          </operator>
          <operator activated="false" class="numerical_to_binominal" compatibility="9.2.000-RC" expanded="true" height="82" name="Numerical to Binominal" width="90" x="380" y="187">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="target"/>
            <parameter key="attributes" value=""/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="numeric"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="real"/>
            <parameter key="block_type" value="value_series"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_series_end"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="true"/>
            <parameter key="min" value="0.0"/>
            <parameter key="max" value="0.0"/>
          </operator>
          <operator activated="true" class="operator_toolbox:create_exampleset" compatibility="1.7.000" expanded="true" height="68" name="Create ExampleSet" width="90" x="514" y="340">
            <parameter key="generator_type" value="numeric_series"/>
            <parameter key="number_of_examples" value="800000"/>
            <parameter key="use_stepsize" value="false"/>
            <list key="function_descriptions"/>
            <parameter key="add_id_attribute" value="false"/>
            <list key="numeric_series_configuration">
              <parameter key="time" value="linear.1\.0.800000\.0"/>
            </list>
            <list key="date_series_configuration"/>
            <list key="date_series_configuration (interval)"/>
            <parameter key="date_format" value="yyyy-MM-dd HH:mm:ss"/>
            <parameter key="column_separator" value=","/>
            <parameter key="parse_all_as_nominal" value="false"/>
            <parameter key="decimal_point_character" value="."/>
            <parameter key="trim_attribute_names" value="true"/>
          </operator>
          <operator activated="true" class="generate_id" compatibility="9.2.000-RC" expanded="true" height="82" name="Generate ID" width="90" x="648" y="340">
            <parameter key="create_nominal_ids" value="false"/>
            <parameter key="offset" value="0"/>
          </operator>
          <operator activated="true" class="generate_id" compatibility="9.2.000-RC" expanded="true" height="82" name="Generate ID (2)" width="90" x="782" y="85">
            <parameter key="create_nominal_ids" value="false"/>
            <parameter key="offset" value="0"/>
          </operator>
          <operator activated="true" class="concurrency:join" compatibility="9.2.000-RC" expanded="true" height="82" name="Join" width="90" x="849" y="238">
            <parameter key="remove_double_attributes" value="true"/>
            <parameter key="join_type" value="inner"/>
            <parameter key="use_id_attribute_as_key" value="true"/>
            <list key="key_attributes">
              <parameter key="time" value="target"/>
            </list>
            <parameter key="keep_both_join_attributes" value="false"/>
          </operator>
          <operator activated="true" class="sample" compatibility="9.2.000-RC" expanded="true" height="82" name="Sample" width="90" x="916" y="85">
            <parameter key="sample" value="absolute"/>
            <parameter key="balance_data" value="false"/>
            <parameter key="sample_size" value="1000"/>
            <parameter key="sample_ratio" value="0.1"/>
            <parameter key="sample_probability" value="0.1"/>
            <list key="sample_size_per_class"/>
            <list key="sample_ratio_per_class"/>
            <list key="sample_probability_per_class"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
          </operator>
          <operator activated="true" class="sort" compatibility="9.2.000-RC" expanded="true" height="82" name="Sort" width="90" x="1050" y="85">
            <parameter key="attribute_name" value="time"/>
            <parameter key="sorting_direction" value="increasing"/>
          </operator>
          <connect from_port="single" to_op="Execute Python" to_port="input 1"/>
          <connect from_op="Read CSV (2)" from_port="output" to_op="Execute Python" to_port="input 2"/>
          <connect from_op="Execute Python" from_port="output 1" to_op="Rename by Replacing" to_port="example set input"/>
          <connect from_op="Rename by Replacing" from_port="example set output" to_op="Loop Attributes" to_port="input 1"/>
          <connect from_op="Loop Attributes" from_port="output 1" to_op="Generate ID (2)" to_port="example set input"/>
          <connect from_op="Create ExampleSet" from_port="output" to_op="Generate ID" to_port="example set input"/>
          <connect from_op="Generate ID" from_port="example set output" to_op="Join" to_port="left"/>
          <connect from_op="Generate ID (2)" from_port="example set output" to_op="Join" to_port="right"/>
          <connect from_op="Join" from_port="join" to_op="Sample" to_port="example set input"/>
          <connect from_op="Sample" from_port="example set output" to_op="Sort" to_port="example set input"/>
          <connect from_op="Sort" from_port="example set output" to_port="output 1"/>
          <portSpacing port="source_single" spacing="0"/>
          <portSpacing port="sink_output 1" spacing="0"/>
          <portSpacing port="sink_output 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="deeplearning:dl4j_timeseries_converter" compatibility="0.9.000" expanded="true" height="68" name="TimeSeries to Tensor" width="90" x="447" y="85"/>
      <operator activated="true" class="deeplearning:dl4j_tensor_sequential_neural_network" compatibility="0.9.000" expanded="true" height="103" name="Deep Learning (Tensor)" width="90" x="581" y="85">
        <parameter key="loss_function" value="Multiclass Cross Entropy (Classification)"/>
        <parameter key="epochs" value="100"/>
        <parameter key="use_miniBatch" value="false"/>
        <parameter key="batch_size" value="32"/>
        <parameter key="updater" value="Adam"/>
        <parameter key="learning_rate" value="0.01"/>
        <parameter key="momentum" value="0.9"/>
        <parameter key="rho" value="0.95"/>
        <parameter key="epsilon" value="1.0E-6"/>
        <parameter key="beta1" value="0.9"/>
        <parameter key="beta2" value="0.999"/>
        <parameter key="RMSdecay" value="0.95"/>
        <parameter key="weight_initialization" value="Normal"/>
        <parameter key="bias_initialization" value="0.0"/>
        <parameter key="use_regularization" value="false"/>
        <parameter key="l1_strength" value="0.1"/>
        <parameter key="l2_strength" value="0.1"/>
        <parameter key="optimization_method" value="Stochastic Gradient Descent"/>
        <parameter key="backpropagation" value="Standard"/>
        <parameter key="backpropagation_length" value="50"/>
        <parameter key="infer_input_shape" value="true"/>
        <parameter key="network_type" value="Simple Neural Network"/>
        <parameter key="log_each_epoch" value="true"/>
        <parameter key="epochs_per_log" value="10"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
        <process expanded="true">
          <operator activated="true" class="deeplearning:dl4j_lstm_layer" compatibility="0.9.000" expanded="true" height="68" name="Add LSTM Layer" origin="GENERATED_SAMPLE" width="90" x="313" y="136">
            <parameter key="neurons" value="20"/>
            <parameter key="gate_activation" value="TanH"/>
            <parameter key="forget_gate_bias_initialization" value="1.0"/>
            <description align="center" color="transparent" colored="false" width="126">A long short term memory layer is used for keeping previous time-steps for current training decisions.</description>
          </operator>
          <operator activated="true" class="deeplearning:dl4j_dense_layer" compatibility="0.9.000" expanded="true" height="68" name="Add Fully-Connected Layer" origin="GENERATED_SAMPLE" width="90" x="581" y="136">
            <parameter key="number_of_neurons" value="2"/>
            <parameter key="activation_function" value="Softmax"/>
            <parameter key="use_dropout" value="false"/>
            <parameter key="dropout_rate" value="0.25"/>
            <parameter key="overwrite_networks_weight_initialization" value="false"/>
            <parameter key="weight_initialization" value="Normal"/>
            <parameter key="overwrite_networks_bias_initialization" value="false"/>
            <parameter key="bias_initialization" value="0.0"/>
            <description align="center" color="transparent" colored="false" width="126">Using no activation function for this output layer, since a regression is performed.</description>
          </operator>
          <connect from_port="layerArchitecture" to_op="Add LSTM Layer" to_port="layerArchitecture"/>
          <connect from_op="Add LSTM Layer" from_port="layerArchitecture" to_op="Add Fully-Connected Layer" to_port="layerArchitecture"/>
          <connect from_op="Add Fully-Connected Layer" from_port="layerArchitecture" to_port="layerArchitecture"/>
          <portSpacing port="source_layerArchitecture" spacing="0"/>
          <portSpacing port="sink_layerArchitecture" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Loop Files" from_port="output 1" to_op="Loop Collection" to_port="collection"/>
      <connect from_op="Loop Collection" from_port="output 1" to_op="TimeSeries to Tensor" to_port="collection"/>
      <connect from_op="TimeSeries to Tensor" from_port="tensor" to_op="Deep Learning (Tensor)" to_port="training set"/>
      <connect from_op="Deep Learning (Tensor)" from_port="model" to_port="result 1"/>
      <connect from_op="Deep Learning (Tensor)" from_port="history" to_port="result 2"/>
      <connect from_op="Deep Learning (Tensor)" from_port="tensor" to_port="result 3"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
      <portSpacing port="sink_result 4" spacing="0"/>
    </process>
  </operator>
</process>

 


Best Answer

Answers

  • lionelderkrikorlionelderkrikor RapidMiner Certified Analyst, Member Posts: 1,195 Unicorn
    Hi @pschlunder,

    I thank you for taking the time to answer me.
    In deed, the parameter backpropagation = Truncated (backpropagation length = 50) accelerates very significantly the process (5 hours -> 90 sec.).
    Moreover I haven't anymore the "warnings" during the process.

    But, I played with the different parameters and now, I have, all the time, a score = 0, for all epochs
    Epoch   score
       1           0
       2           0
       3           0
       .
       .
       N           0

    Can you explain this behaviour ?

    Regards,

    Lionel
Sign In or Register to comment.