The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Explain Predictions table - Coloring explained
I cannot locate an explanation of the color coding RM applies to the table under "Explain Predictions" tab.
I would appreciate someone pointing me to an explanation of what these variations of red and green mean.
I would appreciate someone pointing me to an explanation of what these variations of red and green mean.
1
Best Answers
-
kypexin RapidMiner Certified Analyst, Member Posts: 291 UnicornHi @RSinclair
As per operator's help section:
"operator takes a model and an ExampleSet as input, and generates a table highlighting the attributes that most strongly support (green) or contradict (red) each prediction."
So in your case, for example, CardType = '36 Credit Mag' supports prediction = No, while CardType = '65 Mag' contradicts it. This way you are getting the feeling which features and values play the largest role in each prediction.4 -
MartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data ScientistHi all,please keep in mind, that deep red means: An increase of the value, will (strongly) decrease your target variable.BR,Martin- Sr. Director Data Solutions, Altair RapidMiner -
Dortmund, Germany4
Answers
In case of classification, if my original label is 1 and the predicted value is 0 which is an incorrect prediction, does support predictors (Green) are related to the predicted value 0? Is it like these support predictors are making algorithm predict wrong class in my scenario?
Thanks
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Yes, that is exactly right. The terms "support" and "contradict" are always relative to the prediction of the model, independent of the fact if the prediction is correct or wrong. This way, the explanations can also be created if the true class is not even known at all.
Hope this helps,
Ingo
Are local correlations calculated by explaining predictions operator based on Pearson correlation?
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Dortmund, Germany
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
In the explain prediction operators, is there a way to check the top 3 supporting predictors for correct predictions. Right now I am downloading data and doing some excel operations to find how many samples were predicted correctly and see which predictor supported most of the correct predictions. Similarly, for the incorrect predictions as well.
Thanks for your support.
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Ingo
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="UTF-8"/><br> <process expanded="true"><br> <operator activated="true" class="retrieve" compatibility="9.2.000" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="45" y="187"><br> <parameter key="repository_entry" value="//Samples/data/Titanic Training"/><br> </operator><br> <operator activated="true" class="split_data" compatibility="9.2.000" expanded="true" height="103" name="Split Data" width="90" x="179" y="187"><br> <enumeration key="partitions"><br> <parameter key="ratio" value="0.7"/><br> <parameter key="ratio" value="0.3"/><br> </enumeration><br> <parameter key="sampling_type" value="automatic"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> </operator><br> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.2.000" expanded="true" height="103" name="Decision Tree" width="90" x="313" y="34"><br> <parameter key="criterion" value="gain_ratio"/><br> <parameter key="maximal_depth" value="10"/><br> <parameter key="apply_pruning" value="true"/><br> <parameter key="confidence" value="0.1"/><br> <parameter key="apply_prepruning" value="true"/><br> <parameter key="minimal_gain" value="0.01"/><br> <parameter key="minimal_leaf_size" value="2"/><br> <parameter key="minimal_size_for_split" value="4"/><br> <parameter key="number_of_prepruning_alternatives" value="3"/><br> </operator><br> <operator activated="true" class="model_simulator:explain_predictions" compatibility="9.2.000" expanded="true" height="103" name="Explain Predictions" width="90" x="514" y="187"><br> <parameter key="maximal explaining attributes" value="3"/><br> <parameter key="local sample size" value="500"/><br> <parameter key="only create predictions" value="false"/><br> </operator><br> <operator activated="true" class="filter_examples" compatibility="9.2.000" expanded="true" height="103" name="Filter Examples" width="90" x="648" y="187"><br> <parameter key="parameter_expression" value=""/><br> <parameter key="condition_class" value="correct_predictions"/><br> <parameter key="invert_filter" value="false"/><br> <list key="filters_list"/><br> <parameter key="filters_logic_and" value="true"/><br> <parameter key="filters_check_metadata" value="true"/><br> </operator><br> <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Split Data" to_port="example set"/><br> <connect from_op="Split Data" from_port="partition 1" to_op="Decision Tree" to_port="training set"/><br> <connect from_op="Split Data" from_port="partition 2" to_op="Explain Predictions" to_port="test data"/><br> <connect from_op="Decision Tree" from_port="model" to_op="Explain Predictions" to_port="model"/><br> <connect from_op="Decision Tree" from_port="exampleSet" to_op="Explain Predictions" to_port="training data"/><br> <connect from_op="Explain Predictions" from_port="example set output" to_op="Filter Examples" to_port="example set input"/><br> <connect from_op="Filter Examples" from_port="example set output" to_port="result 1"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="0"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> </process><br> </operator><br></process>
In the example you provided, my observation states that 'Sex' is the major supporting predictor in all these correct predictions. So, I can rank this as the best supporting predictor in this data set for this algorithm. Similarly the second best and third best over all correct predicted samples rather than an individual sample.
Sorry if it's confusing.
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Ingo
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Dortmund, Germany