The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
How to remove near duplicates e.g egg and eggs
Hi,
I am a newbie and I apologize if the question is trivial.
I want to know how to find near duplicate entries in one attribute. For instance I want to treat tomato soup and tomatoe soup as a duplicate, egg and eggs as a duplicate. In your solution, kindly add a screenshot of the operators that you recommend using.
Please help
I am a newbie and I apologize if the question is trivial.
I want to know how to find near duplicate entries in one attribute. For instance I want to treat tomato soup and tomatoe soup as a duplicate, egg and eggs as a duplicate. In your solution, kindly add a screenshot of the operators that you recommend using.
Please help
0
Best Answers
-
rfuentealba RapidMiner Certified Analyst, Member, University Professor Posts: 568 UnicornHello @Khiba,
I don't know how your data looks like, but here is a process that does what you want. You need the Text Processing extension to run this process (and probably the Operator Toolbox if you run RapidMiner 9.1 or earlier).<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="utility:create_exampleset" compatibility="9.2.000" expanded="true" height="68" name="Create ExampleSet" width="90" x="45" y="34"> <parameter key="generator_type" value="comma separated text"/> <parameter key="number_of_examples" value="100"/> <parameter key="use_stepsize" value="false"/> <list key="function_descriptions"/> <parameter key="add_id_attribute" value="false"/> <list key="numeric_series_configuration"/> <list key="date_series_configuration"/> <list key="date_series_configuration (interval)"/> <parameter key="date_format" value="yyyy-MM-dd HH:mm:ss"/> <parameter key="time_zone" value="SYSTEM"/> <parameter key="input_csv_text" value="id,text 1,tomato tomatoes egg eggs soup salad 2,potato potatoes person people sausage sausages"/> <parameter key="column_separator" value=","/> <parameter key="parse_all_as_nominal" value="false"/> <parameter key="decimal_point_character" value="."/> <parameter key="trim_attribute_names" value="true"/> </operator> <operator activated="true" class="set_role" compatibility="9.2.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="34"> <parameter key="attribute_name" value="id"/> <parameter key="target_role" value="id"/> <list key="set_additional_roles"/> </operator> <operator activated="true" class="nominal_to_text" compatibility="9.2.000" expanded="true" height="82" name="Nominal to Text" width="90" x="313" y="34"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="nominal"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="file_path"/> <parameter key="block_type" value="single_value"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="single_value"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> </operator> <operator activated="true" class="text:data_to_documents" compatibility="8.1.000" expanded="true" height="68" name="Data to Documents" width="90" x="447" y="34"> <parameter key="select_attributes_and_weights" value="false"/> <list key="specify_weights"/> </operator> <operator activated="true" class="text:process_documents" compatibility="8.1.000" expanded="true" height="103" name="Process Documents" width="90" x="581" y="34"> <parameter key="create_word_vector" value="true"/> <parameter key="vector_creation" value="TF-IDF"/> <parameter key="add_meta_information" value="true"/> <parameter key="keep_text" value="true"/> <parameter key="prune_method" value="none"/> <parameter key="prune_below_percent" value="3.0"/> <parameter key="prune_above_percent" value="30.0"/> <parameter key="prune_below_rank" value="0.05"/> <parameter key="prune_above_rank" value="0.95"/> <parameter key="datamanagement" value="double_sparse_array"/> <parameter key="data_management" value="auto"/> <process expanded="true"> <operator activated="true" class="text:tokenize" compatibility="8.1.000" expanded="true" height="68" name="Tokenize" width="90" x="45" y="34"> <parameter key="mode" value="non letters"/> <parameter key="characters" value=".:"/> <parameter key="language" value="English"/> <parameter key="max_token_length" value="3"/> </operator> <operator activated="true" class="text:stem_snowball" compatibility="8.1.000" expanded="true" height="68" name="Stem (Snowball)" width="90" x="179" y="34"> <parameter key="language" value="English"/> </operator> <connect from_port="document" to_op="Tokenize" to_port="document"/> <connect from_op="Tokenize" from_port="document" to_op="Stem (Snowball)" to_port="document"/> <connect from_op="Stem (Snowball)" from_port="document" to_port="document 1"/> <portSpacing port="source_document" spacing="0"/> <portSpacing port="sink_document 1" spacing="0"/> <portSpacing port="sink_document 2" spacing="0"/> </process> </operator> <connect from_op="Create ExampleSet" from_port="output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Nominal to Text" to_port="example set input"/> <connect from_op="Nominal to Text" from_port="example set output" to_op="Data to Documents" to_port="example set"/> <connect from_op="Data to Documents" from_port="documents" to_op="Process Documents" to_port="documents 1"/> <connect from_op="Process Documents" from_port="example set" to_port="result 1"/> <connect from_op="Process Documents" from_port="word list" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator> </process>
Hope this helps,
Rodrigo.2 -
rfuentealba RapidMiner Certified Analyst, Member, University Professor Posts: 568 UnicornForgot to explain the process. I apologise, I'm a bit sick.
What I did was:- Convert the data to documents (as required for text processing)
- Process each document, and inside:
- Tokenize (convert text into tokens)
- Stem (I used the Snowball stemming algorithm).
- The result you want can be a wordlist that you can convert it to data again or do what you need. It also comes as an example.
All the best,
Rodrigo.
2
Answers