The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"Can I label the data using the Apriori Algorithm?"
mario_sark
Member Posts: 13 Contributor I
Hello All,
My Question is in RapidMiner , once i created rules using Apriori algorithm , can add an attribute which tell me this customer on which rule belongs ?
the objective is that I've created an RFM Analysis based on Transactions, the next step was that i clustered my customer using K-Means Based on RFM into 3 clusters. the next step will be to do a profiling for these clusters . i need to add an attribute which tells me this customer which profile he/her belongs.
Thank you in Advance,
Mario
My Question is in RapidMiner , once i created rules using Apriori algorithm , can add an attribute which tell me this customer on which rule belongs ?
the objective is that I've created an RFM Analysis based on Transactions, the next step was that i clustered my customer using K-Means Based on RFM into 3 clusters. the next step will be to do a profiling for these clusters . i need to add an attribute which tells me this customer which profile he/her belongs.
Thank you in Advance,
Mario
Tagged:
0
Best Answers
-
yyhuang Administrator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 364 RM Data ScientistHi @mario_sark,
Maybe a decision tree that leverage the cluster labels from k-means would help understanding the rules for clustering. You can also add operator toolbox extension for the "get decision tree path" which will explain the segmentation rules for each customer.
I used the ICU patient data as example.YY<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.2.000" expanded="true" height="68" name="Retrieve ICU Morbidity (cour. Sven Van Poucke)" width="90" x="112" y="34"> <parameter key="repository_entry" value="//Community Samples/Community Data Sets/Medical and Health/ICU Morbidity (cour. Sven Van Poucke)"/> </operator> <operator activated="true" class="numerical_to_polynominal" compatibility="9.2.000" expanded="true" height="82" name="Numerical to Polynominal" width="90" x="246" y="34"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="icustay_id"/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="numeric"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="real"/> <parameter key="block_type" value="value_series"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_series_end"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> </operator> <operator activated="true" class="set_role" compatibility="9.2.000" expanded="true" height="82" name="Set Role" width="90" x="380" y="34"> <parameter key="attribute_name" value="icustay_id"/> <parameter key="target_role" value="id"/> <list key="set_additional_roles"/> <description align="center" color="transparent" colored="false" width="126">icustay_id is an unique identifier for the patients</description> </operator> <operator activated="true" class="replace_missing_values" compatibility="9.2.000" expanded="true" height="103" name="Replace Missing Values" width="90" x="581" y="34"> <parameter key="return_preprocessing_model" value="false"/> <parameter key="create_view" value="false"/> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="gender"/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> <parameter key="default" value="value"/> <list key="columns"/> <parameter key="replenishment_value" value="UNK"/> </operator> <operator activated="true" class="concurrency:k_means" compatibility="9.2.000" expanded="true" height="82" name="Clustering" width="90" x="715" y="34"> <parameter key="add_cluster_attribute" value="true"/> <parameter key="add_as_label" value="true"/> <parameter key="remove_unlabeled" value="false"/> <parameter key="k" value="5"/> <parameter key="max_runs" value="10"/> <parameter key="determine_good_start_values" value="true"/> <parameter key="measure_types" value="MixedMeasures"/> <parameter key="mixed_measure" value="MixedEuclideanDistance"/> <parameter key="nominal_measure" value="NominalDistance"/> <parameter key="numerical_measure" value="EuclideanDistance"/> <parameter key="divergence" value="SquaredEuclideanDistance"/> <parameter key="kernel_type" value="radial"/> <parameter key="kernel_gamma" value="1.0"/> <parameter key="kernel_sigma1" value="1.0"/> <parameter key="kernel_sigma2" value="0.0"/> <parameter key="kernel_sigma3" value="2.0"/> <parameter key="kernel_degree" value="3.0"/> <parameter key="kernel_shift" value="1.0"/> <parameter key="kernel_a" value="1.0"/> <parameter key="kernel_b" value="0.0"/> <parameter key="max_optimization_steps" value="100"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.2.000" expanded="true" height="103" name="Decision Tree" width="90" x="849" y="34"> <parameter key="criterion" value="gain_ratio"/> <parameter key="maximal_depth" value="20"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.1"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <operator activated="true" class="operator_toolbox:get_dectree_path" compatibility="1.8.000" expanded="true" height="82" name="Get Decision Tree Path" width="90" x="983" y="34"/> <connect from_op="Retrieve ICU Morbidity (cour. Sven Van Poucke)" from_port="output" to_op="Numerical to Polynominal" to_port="example set input"/> <connect from_op="Numerical to Polynominal" from_port="example set output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Replace Missing Values" to_port="example set input"/> <connect from_op="Replace Missing Values" from_port="example set output" to_op="Clustering" to_port="example set"/> <connect from_op="Clustering" from_port="clustered set" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_op="Get Decision Tree Path" to_port="mod"/> <connect from_op="Decision Tree" from_port="exampleSet" to_op="Get Decision Tree Path" to_port="exa"/> <connect from_op="Get Decision Tree Path" from_port="exa" to_port="result 1"/> <connect from_op="Get Decision Tree Path" from_port="mod" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator> </process>
7