The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"How to carry out symbolic regression?"
Is there any tutorials/examples on to how use RM to carry out symbolic regression?
Tagged:
0
Answers
Ingo
1. I have a set of data points (x1, x2, x3...) with a corresponding output (y1)
2. I need to derive a relation (in the form of an equation) that links x1, x2, x3 to y1 such that I can predict the output for any inputs variables.
3. Can I do this in RM? If yes, is there a simple example I/my graduate students can follow?
4. Your youtube videos are very helpful! Thanks!
Ingo
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="UTF-8"/><br> <process expanded="true"><br> <operator activated="true" class="generate_data" compatibility="9.2.000" expanded="true" height="68" name="Generate Data" width="90" x="45" y="34"><br> <parameter key="target_function" value="sum"/><br> <parameter key="number_examples" value="1000"/><br> <parameter key="number_of_attributes" value="5"/><br> <parameter key="attributes_lower_bound" value="-10.0"/><br> <parameter key="attributes_upper_bound" value="10.0"/><br> <parameter key="gaussian_standard_deviation" value="10.0"/><br> <parameter key="largest_radius" value="10.0"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> <parameter key="datamanagement" value="double_array"/><br> <parameter key="data_management" value="auto"/><br> </operator><br> <operator activated="true" class="add_noise" compatibility="9.2.000" expanded="true" height="103" name="Add Noise" width="90" x="179" y="34"><br> <parameter key="return_preprocessing_model" value="false"/><br> <parameter key="create_view" value="false"/><br> <parameter key="attribute_filter_type" value="all"/><br> <parameter key="attribute" value=""/><br> <parameter key="attributes" value=""/><br> <parameter key="use_except_expression" value="false"/><br> <parameter key="value_type" value="attribute_value"/><br> <parameter key="use_value_type_exception" value="false"/><br> <parameter key="except_value_type" value="time"/><br> <parameter key="block_type" value="attribute_block"/><br> <parameter key="use_block_type_exception" value="false"/><br> <parameter key="except_block_type" value="value_matrix_row_start"/><br> <parameter key="invert_selection" value="false"/><br> <parameter key="include_special_attributes" value="false"/><br> <parameter key="random_attributes" value="5"/><br> <parameter key="label_noise" value="0.05"/><br> <parameter key="default_attribute_noise" value="0.0"/><br> <list key="noise"/><br> <parameter key="offset" value="0.0"/><br> <parameter key="linear_factor" value="1.0"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> </operator><br> <operator activated="true" class="split_data" compatibility="9.2.000" expanded="true" height="103" name="Split Data" width="90" x="313" y="187"><br> <enumeration key="partitions"><br> <parameter key="ratio" value="0.7"/><br> <parameter key="ratio" value="0.3"/><br> </enumeration><br> <parameter key="sampling_type" value="automatic"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> </operator><br> <operator activated="true" class="linear_regression" compatibility="9.2.000" expanded="true" height="103" name="Linear Regression" width="90" x="447" y="34"><br> <parameter key="feature_selection" value="none"/><br> <parameter key="alpha" value="0.05"/><br> <parameter key="max_iterations" value="10"/><br> <parameter key="forward_alpha" value="0.05"/><br> <parameter key="backward_alpha" value="0.05"/><br> <parameter key="eliminate_colinear_features" value="true"/><br> <parameter key="min_tolerance" value="0.05"/><br> <parameter key="use_bias" value="true"/><br> <parameter key="ridge" value="1.0E-8"/><br> </operator><br> <operator activated="true" class="apply_model" compatibility="9.2.000" expanded="true" height="82" name="Apply Model" width="90" x="581" y="238"><br> <list key="application_parameters"/><br> <parameter key="create_view" value="false"/><br> </operator><br> <operator activated="true" class="model_simulator:model_simulator" compatibility="9.2.000" expanded="true" height="103" name="Model Simulator" width="90" x="782" y="136"/><br> <connect from_op="Generate Data" from_port="output" to_op="Add Noise" to_port="example set input"/><br> <connect from_op="Add Noise" from_port="example set output" to_op="Split Data" to_port="example set"/><br> <connect from_op="Split Data" from_port="partition 1" to_op="Linear Regression" to_port="training set"/><br> <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/><br> <connect from_op="Linear Regression" from_port="model" to_op="Apply Model" to_port="model"/><br> <connect from_op="Linear Regression" from_port="exampleSet" to_op="Model Simulator" to_port="training data"/><br> <connect from_op="Apply Model" from_port="labelled data" to_op="Model Simulator" to_port="test data"/><br> <connect from_op="Apply Model" from_port="model" to_op="Model Simulator" to_port="model"/><br> <connect from_op="Model Simulator" from_port="simulator output" to_port="result 1"/><br> <connect from_op="Model Simulator" from_port="model output" to_port="result 2"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="105"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> <portSpacing port="sink_result 3" spacing="0"/><br> </process><br> </operator><br></process>