The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
"Details on Vector Linear Regression"
castmonkeys
Member Posts: 2 Learner II
Hi
I'm doing a very simple regression with RapidMiner. I have tried several regression-models, but the 'Vector Linear Regression' outperforms all of them significantly. So I am now wondering why. I have looked up the docs on https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/functions/vector_linear_regr , but I don't really understand the idea. Even on Google I coulndt find any valuable information about a 'Vector Linear Regression'. So can you share some details on how this algorithm works? I would be interested in a bit more detailed info, e.g. pseudo-code...
BR
Alex
I'm doing a very simple regression with RapidMiner. I have tried several regression-models, but the 'Vector Linear Regression' outperforms all of them significantly. So I am now wondering why. I have looked up the docs on https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/functions/vector_linear_regr , but I don't really understand the idea. Even on Google I coulndt find any valuable information about a 'Vector Linear Regression'. So can you share some details on how this algorithm works? I would be interested in a bit more detailed info, e.g. pseudo-code...
BR
Alex
Tagged:
0
Best Answer
-
SGolbert RapidMiner Certified Analyst, Member Posts: 344 UnicornHi @castmonkeysAre you talking about SVM or about Vector Linear Regression?Vector Linear Regression is just linear regression applied to multiple labels. It is equivalent to regressing each label separately. It is not comparable to most model types in RapidMiner, which take only one label.RegardsSebastian
5
Answers
Thanks for the response!
I am talking about a Vector Linear Regression, sry for the confusion in the title. (I corrected it)
Okay so now I get the idea of a Vector Linear Regression. But what I still don't get is why it performs much better than a simple Linear Regression, although there's only ONE label in my dataset.
BR
Alex
Ignore this comment as I compared Simple linear regression and Support vector regression. The reason it is performing better is it is more flexible compared to a linear regression algorithm. It takes non-linearity in the distribution of data and overfitting while building model which linear regression does not.
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process" origin="GENERATED_TUTORIAL">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.2.000" expanded="true" height="68" name="Polynomial" origin="GENERATED_TUTORIAL" width="90" x="45" y="187">
<parameter key="repository_entry" value="//Samples/data/Polynomial"/>
</operator>
<operator activated="true" class="split_data" compatibility="9.2.000" expanded="true" height="103" name="Split Data" origin="GENERATED_TUTORIAL" width="90" x="112" y="340">
<enumeration key="partitions">
<parameter key="ratio" value="0.5"/>
<parameter key="ratio" value="0.5"/>
</enumeration>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="multiply" compatibility="9.2.000" expanded="true" height="103" name="Multiply" width="90" x="346" y="263"/>
<operator activated="true" class="vector_linear_regression" compatibility="9.2.000" expanded="true" height="82" name="Vector Linear Regression" origin="GENERATED_TUTORIAL" width="90" x="581" y="187">
<parameter key="use_bias" value="true"/>
<parameter key="ridge" value="1.0E-8"/>
</operator>
<operator activated="true" class="linear_regression" compatibility="9.2.000" expanded="true" height="103" name="Linear Regression" width="90" x="581" y="493">
<parameter key="feature_selection" value="none"/>
<parameter key="alpha" value="0.05"/>
<parameter key="max_iterations" value="10"/>
<parameter key="forward_alpha" value="0.05"/>
<parameter key="backward_alpha" value="0.05"/>
<parameter key="eliminate_colinear_features" value="false"/>
<parameter key="min_tolerance" value="0.05"/>
<parameter key="use_bias" value="true"/>
<parameter key="ridge" value="1.0E-8"/>
</operator>
<operator activated="true" class="multiply" compatibility="9.2.000" expanded="true" height="103" name="Multiply (2)" width="90" x="246" y="493"/>
<operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model (2)" origin="GENERATED_TUTORIAL" width="90" x="715" y="646">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" origin="GENERATED_TUTORIAL" width="90" x="715" y="232">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<connect from_op="Polynomial" from_port="output" to_op="Split Data" to_port="example set"/>
<connect from_op="Split Data" from_port="partition 1" to_op="Multiply" to_port="input"/>
<connect from_op="Split Data" from_port="partition 2" to_op="Multiply (2)" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Vector Linear Regression" to_port="training set"/>
<connect from_op="Multiply" from_port="output 2" to_op="Linear Regression" to_port="training set"/>
<connect from_op="Vector Linear Regression" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Linear Regression" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Multiply (2)" from_port="output 1" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Multiply (2)" from_port="output 2" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_port="result 2"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="90"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
I might be confused. Isn't linear vector regression similar to Support vector regression (SVR) with a linear kernel? Thanks for pointing out
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing