The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Coding open-ended data from surveys
A RapidMiner user wants to know the answer to this question: "Hey there, I am looking to code open-ended data from surveys. I'm used to QDA that uses a cluster algorithm to help find similar open-ends for easy categorization, does RapidMiner have such option? Thank you!"
0
Best Answer
-
yyhuang Administrator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 364 RM Data ScientistFor open ended questions in survey, you can apply vectorization on text and then build clustering models on TF-IDF. It will group the similar reviews, detect duplicated reviews.
Here is an example of text clustering process on job description data<?xml version="1.0" encoding="UTF-8"?><process version="9.2.001"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.2.001" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.2.001" expanded="true" height="68" name="Retrieve REDUCED job post data set (5862 examples)" width="90" x="112" y="34"> <parameter key="repository_entry" value="//Community Samples/Community Data Science/Text Mining Tutorials by Neil McGuigan/data/REDUCED job post data set (5862 examples)"/> </operator> <operator activated="true" class="set_role" compatibility="9.2.001" expanded="true" height="82" name="Set Role" width="90" x="313" y="34"> <parameter key="attribute_name" value="Title"/> <parameter key="target_role" value="jobTitle"/> <list key="set_additional_roles"/> </operator> <operator activated="true" class="model_simulator:text_vectorization" compatibility="9.2.001" expanded="true" height="103" name="Text Vectorization" width="90" x="447" y="34"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value="JobDescription"/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="nominal"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="file_path"/> <parameter key="block_type" value="single_value"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> <parameter key="add sentiment" value="false"/> <parameter key="add language" value="false"/> <parameter key="keep original" value="false"/> <parameter key="store training documents" value="true"/> <parameter key="store scoring documents" value="false"/> <parameter key="document class attribute" value=""/> <parameter key="token split" value="\s+"/> <parameter key="apply pruning" value="true"/> <parameter key="max number of new columns" value="1000"/> </operator> <operator activated="true" class="concurrency:k_means" compatibility="9.2.001" expanded="true" height="82" name="Clustering" width="90" x="581" y="34"> <parameter key="add_cluster_attribute" value="true"/> <parameter key="add_as_label" value="false"/> <parameter key="remove_unlabeled" value="false"/> <parameter key="k" value="4"/> <parameter key="max_runs" value="10"/> <parameter key="determine_good_start_values" value="true"/> <parameter key="measure_types" value="NumericalMeasures"/> <parameter key="mixed_measure" value="MixedEuclideanDistance"/> <parameter key="nominal_measure" value="NominalDistance"/> <parameter key="numerical_measure" value="CosineSimilarity"/> <parameter key="divergence" value="SquaredEuclideanDistance"/> <parameter key="kernel_type" value="radial"/> <parameter key="kernel_gamma" value="1.0"/> <parameter key="kernel_sigma1" value="1.0"/> <parameter key="kernel_sigma2" value="0.0"/> <parameter key="kernel_sigma3" value="2.0"/> <parameter key="kernel_degree" value="3.0"/> <parameter key="kernel_shift" value="1.0"/> <parameter key="kernel_a" value="1.0"/> <parameter key="kernel_b" value="0.0"/> <parameter key="max_optimization_steps" value="100"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <connect from_op="Retrieve REDUCED job post data set (5862 examples)" from_port="output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Text Vectorization" to_port="example set input"/> <connect from_op="Text Vectorization" from_port="example set output" to_op="Clustering" to_port="example set"/> <connect from_op="Clustering" from_port="cluster model" to_port="result 1"/> <connect from_op="Clustering" from_port="clustered set" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator> </process>
8