The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
How to use ARIMA with Forecast Validation and Optimize Parameters Operator?
Hi,
I want to build up a Salesforecast with an ARIMA Model. Therefore I would like to train and test my model and additional I would like to find the best values for p, q and d. Can someone help me how to include the ARIMA Model, Forecast Validation and Optimize Parameters Operator into each other? Thank you in advance for your help.
Greetings
I want to build up a Salesforecast with an ARIMA Model. Therefore I would like to train and test my model and additional I would like to find the best values for p, q and d. Can someone help me how to include the ARIMA Model, Forecast Validation and Optimize Parameters Operator into each other? Thank you in advance for your help.
Greetings
Tagged:
0
Answers
But I recommend you to explore your data first so that you can understand what is happening while the operator is optimizing the ARIMA.
You can place the Forecast Validation operator with the Arima operator in the training and a Performance (Regression) operator in the testing subprocess (the Forecast Validation operator as it is used in the "Forecast Validation of ARIMA Model for Lake Huron" template process) inside an Optimize operator. Just connect the performance output port of the Forecast Validation with the performance port of the Optimize operator. Then select p,d,q to optimize. (below a demo process how this could look like).
Note that the Forecast Validation operator validates the regression performance (for example the relative error) on an independent test window, while the aic, bic, aicc are values describing how well the model fits the training data. Thus it is a training error, which can be used (and for example is used in the arima.auto function in R) to select p,d,q as shown in the "Automized Arima on US - Consumption data" template process. But the performance of the forecast itself should always be evaluated with the Forecast Validation.