The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Neural Net LR error

ZAMZAM Member Posts: 21 Maven
edited June 2019 in Help
Hello

I am getting the following error when i try using Neural Net model for a classification problem.
  • Exception: com.rapidminer.operator.OperatorException
  • Message: Cannot reset network to a smaller learning rate.
  • Stack trace:
  • com.rapidminer.operator.learner.functions.neuralnet.ImprovedNeuralNetModel.train(ImprovedNeuralNetModel.java:179)
  • com.rapidminer.operator.learner.functions.neuralnet.ImprovedNeuralNetModel.train(ImprovedNeuralNetModel.java:182)
  • com.rapidminer.operator.learner.functions.neuralnet.ImprovedNeuralNetModel.train(ImprovedNeuralNetModel.java:182)
Any clue how to fix this?

Thannks a lot.

Comments

  • varunm1varunm1 Member Posts: 1,207 Unicorn
    Hi @ZAM

    Can you provide XML if possible (View --> Show Panel --> XML )?

    Thanks
    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • varunm1varunm1 Member Posts: 1,207 Unicorn
    Hello @ZAM,

    Do you have any null labels in your dataset? I saw this issue was discussed earlier, this happens when the learning rate goes to zero. Here are the earlier threads that discuss this. You need to set decay in NN parameters and also tune your learning rate. If you could provide XML and dataset we can deep dive.

    https://community.rapidminer.com/discussion/10374/warning-caught-exception-cannot-reset-network-to-a-smaller-learning-rate
    https://community.rapidminer.com/discussion/24469/optimize-operator-failure-cannot-reset-network-to-a-smaller-learning-rate
    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • ZAMZAM Member Posts: 21 Maven
    @varunm1 Sorry for the late reply.

    <?xml version="1.0" encoding="UTF-8"?><process version="9.2.001">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.2.001" expanded="true" name="Process">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="retrieve" compatibility="9.2.001" expanded="true" height="68" name="Retrieve" width="90" x="45" y="238">
            <parameter key="repository_entry" value="//Local Repository/data/newresultsCoded9999_2"/>
          </operator>
          <operator activated="true" class="select_attributes" compatibility="9.2.001" expanded="true" height="82" name="Select Attributes" width="90" x="45" y="340">
            <parameter key="attribute_filter_type" value="subset"/>
            <parameter key="attribute" value=""/>
            <parameter key="attributes" value="AGE|CUS_GENDER|Governate|LENGTH_OF_SERVICE|MARITAL_ST|Monthly_Income|NUM_DEP_PEOPLE|PRODUCT_CODE|PRODUCT_CODE_2|PROFFESSION_SECTOR|SUM(ABS(EQU_BAL))"/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="false"/>
          </operator>
          <operator activated="true" class="set_role" compatibility="9.2.001" expanded="true" height="82" name="Set Role" width="90" x="112" y="493">
            <parameter key="attribute_name" value="PRODUCT_CODE_2"/>
            <parameter key="target_role" value="label"/>
            <list key="set_additional_roles"/>
          </operator>
          <operator activated="true" class="nominal_to_numerical" compatibility="9.2.001" expanded="true" height="103" name="Nominal to Numerical" width="90" x="246" y="391">
            <parameter key="return_preprocessing_model" value="false"/>
            <parameter key="create_view" value="false"/>
            <parameter key="attribute_filter_type" value="subset"/>
            <parameter key="attribute" value=""/>
            <parameter key="attributes" value="CUS_GENDER|CUS_SHO_NAME|MARITAL_ST"/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="nominal"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="file_path"/>
            <parameter key="block_type" value="single_value"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="single_value"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="false"/>
            <parameter key="coding_type" value="dummy coding"/>
            <parameter key="use_comparison_groups" value="false"/>
            <list key="comparison_groups"/>
            <parameter key="unexpected_value_handling" value="all 0 and warning"/>
            <parameter key="use_underscore_in_name" value="false"/>
          </operator>
          <operator activated="true" class="split_data" compatibility="9.2.001" expanded="true" height="103" name="Split Data" width="90" x="246" y="187">
            <enumeration key="partitions">
              <parameter key="ratio" value="0.7"/>
              <parameter key="ratio" value="0.3"/>
            </enumeration>
            <parameter key="sampling_type" value="automatic"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="9.2.001" expanded="true" height="103" name="Multiply" width="90" x="380" y="136"/>
          <operator activated="true" class="neural_net" compatibility="9.2.001" expanded="true" height="82" name="Neural Net" width="90" x="514" y="34">
            <list key="hidden_layers">
              <parameter key="1" value="10"/>
              <parameter key="2" value="10"/>
              <parameter key="3" value="10"/>
            </list>
            <parameter key="training_cycles" value="200"/>
            <parameter key="learning_rate" value="0.01"/>
            <parameter key="momentum" value="0.9"/>
            <parameter key="decay" value="false"/>
            <parameter key="shuffle" value="true"/>
            <parameter key="normalize" value="true"/>
            <parameter key="error_epsilon" value="1.0E-4"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="9.2.001" expanded="true" height="103" name="Multiply (2)" width="90" x="380" y="493"/>
          <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model" width="90" x="648" y="136">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="model_simulator:explain_predictions" compatibility="9.2.001" expanded="true" height="103" name="Explain Predictions" width="90" x="782" y="289">
            <parameter key="maximal explaining attributes" value="3"/>
            <parameter key="local sample size" value="500"/>
            <parameter key="only create predictions" value="false"/>
          </operator>
          <connect from_op="Retrieve" from_port="output" to_op="Select Attributes" to_port="example set input"/>
          <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
          <connect from_op="Set Role" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
          <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Split Data" to_port="example set"/>
          <connect from_op="Split Data" from_port="partition 1" to_op="Multiply" to_port="input"/>
          <connect from_op="Split Data" from_port="partition 2" to_op="Multiply (2)" to_port="input"/>
          <connect from_op="Multiply" from_port="output 1" to_op="Neural Net" to_port="training set"/>
          <connect from_op="Multiply" from_port="output 2" to_op="Explain Predictions" to_port="training data"/>
          <connect from_op="Neural Net" from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_op="Multiply (2)" from_port="output 1" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Multiply (2)" from_port="output 2" to_op="Explain Predictions" to_port="test data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/>
          <connect from_op="Apply Model" from_port="model" to_op="Explain Predictions" to_port="model"/>
          <connect from_op="Explain Predictions" from_port="visualization output" to_port="result 2"/>
          <connect from_op="Explain Predictions" from_port="example set output" to_port="result 3"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
          <portSpacing port="sink_result 3" spacing="0"/>
          <portSpacing port="sink_result 4" spacing="0"/>
        </process>
      </operator>
    </process>

Sign In or Register to comment.