The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Set two featurs as label at the same time

User11050User11050 Member Posts: 6 Contributor I
I do wonder whether it would be possible to set two features as label at the SAME TIME. So the models would consider both as label features.
Regards.

Answers

  • varunm1varunm1 Member Posts: 1,207 Unicorn
    Hello @User11050

    You can only set one label at a time as per my understanding, you need to loop your process using loop attributes operator and then set the role to a different attribute every time. Please see example below with titanic dataset. @IngoRM any suggestion on this? (looks like a multi-label problem)

    <?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="9.3.001" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="9.3.001" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="179" y="34">
    <parameter key="repository_entry" value="//Samples/data/Titanic Training"/>
    </operator>
    <operator activated="true" class="set_role" compatibility="9.3.001" expanded="true" height="82" name="Set Role (3)" width="90" x="313" y="34">
    <parameter key="attribute_name" value="Survived"/>
    <parameter key="target_role" value="regular"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="concurrency:loop_attributes" compatibility="8.2.000" expanded="true" height="124" name="Loop Attributes" width="90" x="514" y="85">
    <parameter key="attribute_filter_type" value="subset"/>
    <parameter key="attribute" value=""/>
    <parameter key="attributes" value="Sex|Survived"/>
    <parameter key="use_except_expression" value="false"/>
    <parameter key="value_type" value="attribute_value"/>
    <parameter key="use_value_type_exception" value="false"/>
    <parameter key="except_value_type" value="time"/>
    <parameter key="block_type" value="attribute_block"/>
    <parameter key="use_block_type_exception" value="false"/>
    <parameter key="except_block_type" value="value_matrix_row_start"/>
    <parameter key="invert_selection" value="false"/>
    <parameter key="include_special_attributes" value="false"/>
    <parameter key="attribute_name_macro" value="loop_attribute"/>
    <parameter key="reuse_results" value="false"/>
    <parameter key="enable_parallel_execution" value="true"/>
    <process expanded="true">
    <operator activated="true" class="set_role" compatibility="5.3.013" expanded="true" height="82" name="Set Role" width="90" x="112" y="34">
    <parameter key="attribute_name" value="%{loop_attribute}"/>
    <parameter key="target_role" value="label"/>
    <list key="set_additional_roles"/>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Cross Validation" width="90" x="313" y="34">
    <parameter key="split_on_batch_attribute" value="false"/>
    <parameter key="leave_one_out" value="false"/>
    <parameter key="number_of_folds" value="10"/>
    <parameter key="sampling_type" value="automatic"/>
    <parameter key="use_local_random_seed" value="false"/>
    <parameter key="local_random_seed" value="1992"/>
    <parameter key="enable_parallel_execution" value="true"/>
    <process expanded="true">
    <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.3.001" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34">
    <parameter key="criterion" value="gain_ratio"/>
    <parameter key="maximal_depth" value="10"/>
    <parameter key="apply_pruning" value="true"/>
    <parameter key="confidence" value="0.1"/>
    <parameter key="apply_prepruning" value="true"/>
    <parameter key="minimal_gain" value="0.01"/>
    <parameter key="minimal_leaf_size" value="2"/>
    <parameter key="minimal_size_for_split" value="4"/>
    <parameter key="number_of_prepruning_alternatives" value="3"/>
    </operator>
    <connect from_port="training set" to_op="Decision Tree" to_port="training set"/>
    <connect from_op="Decision Tree" from_port="model" to_port="model"/>
    <connect from_op="Decision Tree" from_port="exampleSet" to_port="through 1"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    <portSpacing port="sink_through 2" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="9.3.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
    <list key="application_parameters"/>
    <parameter key="create_view" value="false"/>
    </operator>
    <operator activated="true" class="performance_classification" compatibility="9.3.001" expanded="true" height="82" name="Performance (3)" width="90" x="246" y="136">
    <parameter key="main_criterion" value="first"/>
    <parameter key="accuracy" value="true"/>
    <parameter key="classification_error" value="false"/>
    <parameter key="kappa" value="true"/>
    <parameter key="weighted_mean_recall" value="false"/>
    <parameter key="weighted_mean_precision" value="false"/>
    <parameter key="spearman_rho" value="false"/>
    <parameter key="kendall_tau" value="false"/>
    <parameter key="absolute_error" value="false"/>
    <parameter key="relative_error" value="false"/>
    <parameter key="relative_error_lenient" value="false"/>
    <parameter key="relative_error_strict" value="false"/>
    <parameter key="normalized_absolute_error" value="false"/>
    <parameter key="root_mean_squared_error" value="false"/>
    <parameter key="root_relative_squared_error" value="false"/>
    <parameter key="squared_error" value="false"/>
    <parameter key="correlation" value="false"/>
    <parameter key="squared_correlation" value="false"/>
    <parameter key="cross-entropy" value="false"/>
    <parameter key="margin" value="false"/>
    <parameter key="soft_margin_loss" value="false"/>
    <parameter key="logistic_loss" value="false"/>
    <parameter key="skip_undefined_labels" value="true"/>
    <parameter key="use_example_weights" value="true"/>
    <list key="class_weights"/>
    </operator>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance (3)" to_port="labelled data"/>
    <connect from_op="Performance (3)" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance (3)" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="source_through 2" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    </process>
    </operator>
    <connect from_port="input 1" to_op="Set Role" to_port="example set input"/>
    <connect from_op="Set Role" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
    <connect from_op="Cross Validation" from_port="model" to_port="output 2"/>
    <connect from_op="Cross Validation" from_port="test result set" to_port="output 3"/>
    <connect from_op="Cross Validation" from_port="performance 1" to_port="output 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="source_input 2" spacing="0"/>
    <portSpacing port="sink_output 1" spacing="0"/>
    <portSpacing port="sink_output 2" spacing="0"/>
    <portSpacing port="sink_output 3" spacing="0"/>
    <portSpacing port="sink_output 4" spacing="0"/>
    </process>
    </operator>
    <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Set Role (3)" to_port="example set input"/>
    <connect from_op="Set Role (3)" from_port="example set output" to_op="Loop Attributes" to_port="input 1"/>
    <connect from_op="Loop Attributes" from_port="output 1" to_port="result 1"/>
    <connect from_op="Loop Attributes" from_port="output 3" to_port="result 2"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    </process>
    </operator>
    </process>

    Hope this helps.
    Regards,
    Varun
    https://www.varunmandalapu.com/

    Be Safe. Follow precautions and Maintain Social Distancing

  • IngoRMIngoRM Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Community Manager, RMResearcher, Member, University Professor Posts: 1,751 RM Founder
    That is exactly right.  Predictive models need one label at a time but you can of course create multiple models for different columns like @varunm1 has suggested.  There is also one operator in RapidMiner called Vector Linear Regression which can predict multiple labels at the same time.  However, I personally find the multi-model approach discussed before to be more effective.
    Hope that helps,
    Ingo
  • User11050User11050 Member Posts: 6 Contributor I
    Thanks tftemme
    I've already running RapidMiner version 9.3 but couldn't find this operator there.
    Regards
    Mansour
  • tftemmetftemme Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, RMResearcher, Member Posts: 164 RM Research
    Hi,

    As I said with the next version 9.4 there will be the operator (this was meant as a teaser for the next release ;-). Its still in the development phase. For now (until 9.4) you would need to set the roles manually.

    Best regards,
    Fabian
  • tftemmetftemme Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, RMResearcher, Member Posts: 164 RM Research
    To update on this. As stated, since 9.4.1 RM contains now the 'Multi Label Modeling' operator to train a model for multiple label attributes. There are also the operators 'Multi Label Performance' (for evaluating the performance of such a model), and the 'Multi Horizon Forecast' and 'Multi Horizon Performance' operator which handles the time series related multi label operations.

    Best regards,
    Fabian
Sign In or Register to comment.