The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Simple Crosstab with totals

btibertbtibert Member, University Professor Posts: 146 Guru
edited September 2019 in Help
I have seen other questions posted here and via Google Searches, but perhaps the solution was for prior RM versions where operators are either no longer available, or are now required paid licenses via 3rd party tools.

My thought was to simply Pivot the data, which works as expected, but the ability to add a total is lacking.  In my case, it's just a simple 2x2, which I can do with pivot, but the table is lacking totals. 

Could I add them up, sure?  But that feels clunky given how powerful, and intuitive, the tool is to use.

Is is not possible without paying for a license via an extension found in the Marketplace?  I am really going to enjoy using this as a teaching tool for my class, but it feels like I must be missing something obvious when generating simple 2x2 tables, with totals, is basically EDA 101.

Thanks,

Brock
Tagged:

Best Answer

Answers

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
    edited September 2019

    can you give me an example (for example in excel) how this might look like? Let me see, maybe I find the time to build it.

    Cheers,
    Martin


    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • btibertbtibert Member, University Professor Posts: 146 Guru
    Thanks for the quick reply.  I was just playing around with the built in tutorial for lift charts, and modified the output to include pivot.  The attached screenshots show the process and the expected output.   From the example, I am just crossing the label with the predicted value into a 2x2 matrix.

    And to your other question, those examples are definitely more complicated than I am looking for out of the box.

    Cheers,

    Brock




  • sgenzersgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager
    hi @btibertb yeah that seems like one of those things where simply 'no one has ever asked before'. It can probably be done very simply with a few lines of code, or perhaps you can create a BuildingBlock for people to use?

    Scott
  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
    Hey @btibert ,
    i've got 20 minutes to write a prototype in java for it. Are you interested polishing it and creating your own extension? The code for the operator is this:
    package com.rapidminer.extension.operator.blending;

    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.List;

    import com.rapidminer.example.Attribute;
    import com.rapidminer.example.Example;
    import com.rapidminer.example.ExampleSet;
    import com.rapidminer.example.table.AttributeFactory;
    import com.rapidminer.example.utils.ExampleSetBuilder;
    import com.rapidminer.example.utils.ExampleSets;
    import com.rapidminer.operator.Operator;
    import com.rapidminer.operator.OperatorDescription;
    import com.rapidminer.operator.UserError;
    import com.rapidminer.operator.ports.InputPort;
    import com.rapidminer.operator.ports.OutputPort;
    import com.rapidminer.parameter.ParameterType;
    import com.rapidminer.parameter.ParameterTypeAttribute;
    import com.rapidminer.parameter.ParameterTypeBoolean;
    import com.rapidminer.parameter.ParameterTypeCategory;
    import com.rapidminer.parameter.ParameterTypeDouble;
    import com.rapidminer.parameter.ParameterTypeInt;
    import com.rapidminer.parameter.conditions.EqualStringCondition;
    import com.rapidminer.tools.Ontology;


    public class CrossTable extends Operator {

    InputPort exaInput = getInputPorts().createPort("exa");

    OutputPort crossOutput = getOutputPorts().createPort("cro");
    OutputPort crossOut = getOutputPorts().createPassThroughPort("ori");

    public final static String PARAMETER_X_ATTRIBTUE = "x_attribute";
    public final static String PARAMETER_Y_ATTRIBTUE = "y_attribute";

    public CrossTable(OperatorDescription description) {
    super(description);
    }

    public void doWork() throws UserError {
    ExampleSet exampleSet = exaInput.getData(ExampleSet.class);
    Attribute x = exampleSet.getAttributes().get(getParameterAsString(PARAMETER_X_ATTRIBTUE));
    Attribute y = exampleSet.getAttributes().get(getParameterAsString(PARAMETER_Y_ATTRIBTUE));
    Integer xSize = x.getMapping().getValues().size();
    Integer ySize = y.getMapping().getValues().size();

    double[][] values = new double[xSize + 1][ySize + 2];
    // Initialize with 0s
    for (int xCounter = 0; xCounter < xSize + 1; ++xCounter) {
    for (int yCounter = 1; yCounter < ySize + 2; ++yCounter) {
    values[xCounter][yCounter] = 0;
    }
    }
    // Add the names
    Attribute nameAttribute = AttributeFactory.createAttribute("name",Ontology.POLYNOMINAL);
    for (int xCounter = 0; xCounter < xSize; ++xCounter) {
    values[xCounter][0] = nameAttribute.getMapping().mapString(x.getMapping().getValues().get(xCounter));
    }
    values[xSize][0] = nameAttribute.getMapping().mapString("sum");

    // sum! :)
    for (Example exa : exampleSet) {
    int xIndex = x.getMapping().getValues().indexOf(exa.getNominalValue(x));
    int yIndex = y.getMapping().getValues().indexOf(exa.getNominalValue(y));

    values[xIndex][yIndex+1] += 1;
    }

    for (int xCounter = 0; xCounter < xSize; ++xCounter) {
    double ySum = 0;
    for (int yCounter = 0; yCounter < ySize; ++yCounter) {
    ySum += values[xCounter][yCounter+1];
    }
    values[xCounter][ySize+1] = ySum;
    }

    for (int yCounter = 0; yCounter < ySize; ++yCounter) {
    double xSum = 0;
    for (int xCounter = 0; xCounter < xSize; ++xCounter) {
    xSum += values[xCounter][yCounter+1];
    }
    values[xSize][yCounter+1] = xSum;
    }

    values[xSize][ySize+1] = exampleSet.size();

    List<Attribute> listOfAttributes = new ArrayList<Attribute>();
    listOfAttributes.add(nameAttribute);
    for (String value : y.getMapping().getValues()) {
    listOfAttributes.add(AttributeFactory.createAttribute("count(" + value + ")", Ontology.REAL));
    }
    listOfAttributes.add(AttributeFactory.createAttribute("sum", Ontology.REAL));


    ExampleSetBuilder builder = ExampleSets.from(listOfAttributes);
    for(double[] row : values){
    builder.addRow(row);
    }
    crossOutput.deliver(builder.build());
    }
    @Override
    public List<ParameterType> getParameterTypes() {
    List<ParameterType> types = new ArrayList<>();

    types.add(new ParameterTypeAttribute(PARAMETER_X_ATTRIBTUE,"Attribute to construct the horizontal axis.",exaInput));
    types.add(new ParameterTypeAttribute(PARAMETER_Y_ATTRIBTUE,"Attribute to construct the vertical axis.",exaInput));

    return types;
    }


    }

    Best,
    Martin

    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • BalazsBaranyBalazsBarany Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert Posts: 955 Unicorn
    Hi,

    you can do it in RapidMiner.


    It needs a few steps:


    Unfortunately, it's not a good building block (yet) because the first (grouping) attribute name is hard coded. 

    Generate Aggregation creates the "total" attribute with the sum of all numeric columns (attribute filter type=value_type, value type=numeric).

    Aggregate creates the sums with "use default aggregation", attribute filter type ... numeric, and default aggregation function = sum.

    Then we add the text "Total" with the attribute name from the un-aggregated example set and rename the aggregated attributes from "sum(whatever)" to just "whatever" using Rename by Replacing (replace what: sum.(.+).$ ; replace by: $1). 

    Maybe we could extract the attribute name from the incoming example set, save it as a macro and reuse that in the Generate Attributes step. Then it would be completely generic and a possible building block. But that's an exercise for the reader ;-)

    Regards,

    Balázs
  • btibertbtibert Member, University Professor Posts: 146 Guru
    Wow, this is absolutely fantastic, thank you everyone.  Let me digest this (I am prepping for class tonight) but I am very encouraged by the ideas and feedback above.  Excellent stuff!
  • btibertbtibert Member, University Professor Posts: 146 Guru
    mschmitz  absolutely interested in learning how to do that, I am not quite there yet. 
  • btibertbtibert Member, University Professor Posts: 146 Guru
    @BalazsBarany how would I go about adding that to my local install?  Thanks for your help on this!
  • btibertbtibert Member, University Professor Posts: 146 Guru
    NVM, I figured that part out.  I was looking for a way to "install" via the interface, but realized I can drop the file inside the install folder.  Thanks again.
  • MarcoBarradasMarcoBarradas Administrator, Employee-RapidMiner, RapidMiner Certified Analyst, Member Posts: 272 Unicorn
    @btibert
    Maybe my solution is not the easiest but it works:
    data.loc['Total']= data.sum()</code><?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="9.3.001" expanded="true" name="Process">
        <parameter key="logverbosity" value="init"/>
        <parameter key="random_seed" value="2001"/>
        <parameter key="send_mail" value="never"/>
        <parameter key="notification_email" value=""/>
        <parameter key="process_duration_for_mail" value="30"/>
        <parameter key="encoding" value="SYSTEM"/>
        <process expanded="true">
          <operator activated="true" class="generate_nominal_data" compatibility="9.3.001" expanded="true" height="68" name="Generate Nominal Data" width="90" x="45" y="34">
            <parameter key="number_examples" value="100"/>
            <parameter key="number_of_attributes" value="1"/>
            <parameter key="number_of_values" value="5"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
          </operator>
          <operator activated="true" class="blending:pivot" compatibility="9.3.001" expanded="true" height="82" name="Pivot" width="90" x="179" y="34">
            <parameter key="group_by_attributes" value="att1"/>
            <parameter key="column_grouping_attribute" value="label"/>
            <list key="aggregation_attributes">
              <parameter key="label" value="count"/>
            </list>
            <parameter key="use_default_aggregation" value="false"/>
            <parameter key="default_aggregation_function" value="first"/>
          </operator>
          <operator activated="true" class="rename_by_replacing" compatibility="9.3.001" expanded="true" height="82" name="Rename by Replacing" width="90" x="313" y="34">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="att1"/>
            <parameter key="attributes" value=""/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="true"/>
            <parameter key="include_special_attributes" value="false"/>
            <parameter key="replace_what" value=".*_"/>
          </operator>
          <operator activated="true" class="replace_missing_values" compatibility="9.3.001" expanded="true" height="103" name="Replace Missing Values" width="90" x="514" y="34">
            <parameter key="return_preprocessing_model" value="false"/>
            <parameter key="create_view" value="false"/>
            <parameter key="attribute_filter_type" value="all"/>
            <parameter key="attribute" value=""/>
            <parameter key="attributes" value=""/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="false"/>
            <parameter key="default" value="zero"/>
            <list key="columns"/>
          </operator>
          <operator activated="true" class="generate_aggregation" compatibility="9.3.001" expanded="true" height="82" name="Generate Aggregation" width="90" x="648" y="34">
            <parameter key="attribute_name" value="Total_Column"/>
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="att1"/>
            <parameter key="attributes" value=""/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="true"/>
            <parameter key="include_special_attributes" value="false"/>
            <parameter key="aggregation_function" value="sum"/>
            <parameter key="concatenation_separator" value="|"/>
            <parameter key="keep_all" value="true"/>
            <parameter key="ignore_missings" value="true"/>
            <parameter key="ignore_missing_attributes" value="false"/>
          </operator>
          <operator activated="true" class="transpose" compatibility="9.3.001" expanded="true" height="82" name="Transpose" width="90" x="782" y="34"/>
          <operator activated="true" class="rename_by_example_values" compatibility="9.3.001" expanded="true" height="82" name="Rename by Example Values" width="90" x="916" y="34">
            <parameter key="row_number" value="1"/>
          </operator>
          <operator activated="true" class="parse_numbers" compatibility="9.3.001" expanded="true" height="82" name="Parse Numbers" width="90" x="1050" y="34">
            <parameter key="attribute_filter_type" value="all"/>
            <parameter key="attribute" value=""/>
            <parameter key="attributes" value=""/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="nominal"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="file_path"/>
            <parameter key="block_type" value="single_value"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="single_value"/>
            <parameter key="invert_selection" value="false"/>
            <parameter key="include_special_attributes" value="false"/>
            <parameter key="decimal_character" value="."/>
            <parameter key="grouped_digits" value="false"/>
            <parameter key="grouping_character" value=","/>
            <parameter key="infinity_representation" value=""/>
            <parameter key="unparsable_value_handling" value="fail"/>
          </operator>
          <operator activated="true" class="generate_aggregation" compatibility="9.3.001" expanded="true" height="82" name="Generate Aggregation (2)" width="90" x="1184" y="34">
            <parameter key="attribute_name" value="Total_Row"/>
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="att1"/>
            <parameter key="attributes" value=""/>
            <parameter key="use_except_expression" value="false"/>
            <parameter key="value_type" value="attribute_value"/>
            <parameter key="use_value_type_exception" value="false"/>
            <parameter key="except_value_type" value="time"/>
            <parameter key="block_type" value="attribute_block"/>
            <parameter key="use_block_type_exception" value="false"/>
            <parameter key="except_block_type" value="value_matrix_row_start"/>
            <parameter key="invert_selection" value="true"/>
            <parameter key="include_special_attributes" value="true"/>
            <parameter key="aggregation_function" value="sum"/>
            <parameter key="concatenation_separator" value="|"/>
            <parameter key="keep_all" value="true"/>
            <parameter key="ignore_missings" value="false"/>
            <parameter key="ignore_missing_attributes" value="false"/>
          </operator>
          <operator activated="true" class="transpose" compatibility="9.3.001" expanded="true" height="82" name="Transpose (2)" width="90" x="1050" y="238"/>
          <connect from_op="Generate Nominal Data" from_port="output" to_op="Pivot" to_port="input"/>
          <connect from_op="Pivot" from_port="output" to_op="Rename by Replacing" to_port="example set input"/>
          <connect from_op="Rename by Replacing" from_port="example set output" to_op="Replace Missing Values" to_port="example set input"/>
          <connect from_op="Replace Missing Values" from_port="example set output" to_op="Generate Aggregation" to_port="example set input"/>
          <connect from_op="Generate Aggregation" from_port="example set output" to_op="Transpose" to_port="example set input"/>
          <connect from_op="Transpose" from_port="example set output" to_op="Rename by Example Values" to_port="example set input"/>
          <connect from_op="Rename by Example Values" from_port="example set output" to_op="Parse Numbers" to_port="example set input"/>
          <connect from_op="Parse Numbers" from_port="example set output" to_op="Generate Aggregation (2)" to_port="example set input"/>
          <connect from_op="Generate Aggregation (2)" from_port="example set output" to_op="Transpose (2)" to_port="example set input"/>
          <connect from_op="Transpose (2)" from_port="example set output" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>
    </pre><div>Another way is using the Python process<br>and use this line of code to add a row with the totals of each column<br><pre class="CodeBlock"><code>#
    


  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
    in case you want to learn how to write operators: This tutorial is a great start https://docs.rapidminer.com/latest/developers/extensions/ . It is quite easy, if you have a bit of experience with Java (or similar langauges). My code will make way more sense if you did though. I know by the way that Katharina Morik, who supervised @IngoRM 's PhD thesis, is using extensions for her lectures, enabling students to implement their own versions of algorithms.

    Cheers,
    Martin

    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
  • btibertbtibert Member, University Professor Posts: 146 Guru
    @mschmitz
    Thanks, I am mostly focused in R and python, but I will give it a review.
  • btibertbtibert Member, University Professor Posts: 146 Guru
    @BalazsBarany
    To circle back, this behaved exactly as expected for my example above.  Thanks!  
Sign In or Register to comment.