The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Manual inspection of missclassified examples
Carl_Granström
Member Posts: 3 Learner I
in Help
Hello,
I'm trying to find out how, after training a classification model, I can look at the examples that were incorrectly classified. For now I can only see how many examples were incorrectly classified in the confusion matrix, but I want to inspect the missclassified examples manually. Since evaluation vector does not seem to be able to store such information I guess I need to somehow add another operator to achieve this, if it's even possible (which, in my own opinion, feels like a very basic feature, so I'm hoping it's there somewhere).
Kind regards,
Carl
Tagged:
0
Best Answer
-
sgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Managerhi @Carl_Granström hmm well that does sound very basic. Funny thing is that I moderate this forum and have been on it for years - I cannot recall anyone asking!
Anyway it's pretty easy. I would just put a Filter Examples on the end like this:<?xml version="1.0" encoding="UTF-8"?><process version="9.5.000-BETA4"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.5.000-BETA4" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="-1"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.5.000-BETA4" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="45" y="34"> <parameter key="repository_entry" value="//Samples/data/Titanic Training"/> </operator> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.5.000-BETA4" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34"> <parameter key="criterion" value="gain_ratio"/> <parameter key="maximal_depth" value="10"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.1"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <operator activated="true" class="apply_model" compatibility="9.5.000-BETA4" expanded="true" height="82" name="Apply Model" width="90" x="380" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="filter_examples" compatibility="9.5.000-BETA4" expanded="true" height="103" name="Filter Examples" width="90" x="514" y="34"> <parameter key="parameter_expression" value="Survived!=[prediction(Survived)]"/> <parameter key="condition_class" value="expression"/> <parameter key="invert_filter" value="false"/> <list key="filters_list"/> <parameter key="filters_logic_and" value="true"/> <parameter key="filters_check_metadata" value="true"/> <description align="center" color="yellow" colored="true" width="126">here's where I only find incorrect predictions</description> </operator> <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Decision Tree" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Filter Examples" to_port="example set input"/> <connect from_op="Filter Examples" from_port="example set output" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> </process>
Scott1
Answers
You need to connect the "Exa" port of the "Performance" Operator inside the validation to the "tes" port. Then you connect the "Tes" output of cross-validation operator to the process output or filter examples as Scott did in earlier example.
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
In deed, Split Validation operator has no tes output port.
But you can extract the test set using the association Remember/Recall operators.
Take a look at this process :
Regards,
Lionel