The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

gradient boosted trees application

klugmanklugman Member Posts: 3 Learner I
edited November 2019 in Help
After I got a model, I want to apply it outside rapidminer - for example on BI model. Where can I find the formula that calculated the prediction?

Best Answer

Answers

  • klugmanklugman Member Posts: 3 Learner I
    Hi Vaurun,

    I need to apply this model in a device that is not connected to the world - I guess I will need to find a solution outside Rapid.

    Many Thanks,
    Klug
  • IngoRMIngoRM Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Community Manager, RMResearcher, Member, University Professor Posts: 1,751 RM Founder
    Hi,
    You can use a command line version of the RapidMiner engine or install a deployment server on that device to use all models directly.  I would definitely consider this if possible.
    Most models do not support the generation of "easy" formulas.  There is actually an operator for this extraction, but only few model types are supported.  GBT is not one of them.  Here is an example process nevertheless.
    Cheers,
    Ingo
    <?xml version="1.0" encoding="UTF-8"?><process version="9.6.000-SNAPSHOT"><br>  <context><br>    <input/><br>    <output/><br>    <macros/><br>  </context><br>  <operator activated="true" class="process" compatibility="9.6.000-SNAPSHOT" expanded="true" name="Process"><br>    <parameter key="logverbosity" value="init"/><br>    <parameter key="random_seed" value="2001"/><br>    <parameter key="send_mail" value="never"/><br>    <parameter key="notification_email" value=""/><br>    <parameter key="process_duration_for_mail" value="30"/><br>    <parameter key="encoding" value="UTF-8"/><br>    <process expanded="true"><br>      <operator activated="true" class="retrieve" compatibility="9.6.000-SNAPSHOT" expanded="true" height="68" name="Retrieve Sonar" width="90" x="45" y="34"><br>        <parameter key="repository_entry" value="//Samples/data/Sonar"/><br>      </operator><br>      <operator activated="true" class="support_vector_machine" compatibility="9.6.000-SNAPSHOT" expanded="true" height="124" name="SVM" width="90" x="179" y="34"><br>        <parameter key="kernel_type" value="dot"/><br>        <parameter key="kernel_gamma" value="1.0"/><br>        <parameter key="kernel_sigma1" value="1.0"/><br>        <parameter key="kernel_sigma2" value="0.0"/><br>        <parameter key="kernel_sigma3" value="2.0"/><br>        <parameter key="kernel_shift" value="1.0"/><br>        <parameter key="kernel_degree" value="2.0"/><br>        <parameter key="kernel_a" value="1.0"/><br>        <parameter key="kernel_b" value="0.0"/><br>        <parameter key="kernel_cache" value="200"/><br>        <parameter key="C" value="0.0"/><br>        <parameter key="convergence_epsilon" value="0.001"/><br>        <parameter key="max_iterations" value="100000"/><br>        <parameter key="scale" value="true"/><br>        <parameter key="calculate_weights" value="true"/><br>        <parameter key="return_optimization_performance" value="true"/><br>        <parameter key="L_pos" value="1.0"/><br>        <parameter key="L_neg" value="1.0"/><br>        <parameter key="epsilon" value="0.0"/><br>        <parameter key="epsilon_plus" value="0.0"/><br>        <parameter key="epsilon_minus" value="0.0"/><br>        <parameter key="balance_cost" value="false"/><br>        <parameter key="quadratic_loss_pos" value="false"/><br>        <parameter key="quadratic_loss_neg" value="false"/><br>        <parameter key="estimate_performance" value="false"/><br>      </operator><br>      <operator activated="true" class="create_formula" compatibility="9.6.000-SNAPSHOT" expanded="true" height="82" name="Create Formula" width="90" x="313" y="34"/><br>      <connect from_op="Retrieve Sonar" from_port="output" to_op="SVM" to_port="training set"/><br>      <connect from_op="SVM" from_port="model" to_op="Create Formula" to_port="model"/><br>      <connect from_op="Create Formula" from_port="formula" to_port="result 1"/><br>      <portSpacing port="source_input 1" spacing="0"/><br>      <portSpacing port="sink_result 1" spacing="0"/><br>      <portSpacing port="sink_result 2" spacing="0"/><br>    </process><br>  </operator><br></process><br><br>
  • klugmanklugman Member Posts: 3 Learner I
    Hi Ingo,

    I am truly very impressed by RapidMiner software and service. I was hoping to find an easy solution :-)
    The options mentioned above "command line version of the RapidMiner engine" how can one get it?

    Many Thanks,
    Klug
  • IngoRMIngoRM Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Community Manager, RMResearcher, Member, University Professor Posts: 1,751 RM Founder
    edited November 2019
Sign In or Register to comment.