The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Best way to combine multiple Featureset Objects into one?
Best Answer
-
varunm1 Member Posts: 1,207 UnicornHere is the working sample of how to apply the model using loop attribute subset. "Log" has performance.
<?xml version="1.0" encoding="UTF-8"?><process version="9.5.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process" origin="GENERATED_TUTORIAL">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.5.001" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="313" y="136">
<parameter key="repository_entry" value="//Samples/data/Titanic Training"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="9.5.001" expanded="true" height="82" name="Select Attributes" width="90" x="447" y="136">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="Age"/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="true"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="loop_attribute_subsets" compatibility="9.5.001" expanded="true" height="68" name="Loop Subsets" origin="GENERATED_TUTORIAL" width="90" x="581" y="136">
<parameter key="use_exact_number" value="false"/>
<parameter key="exact_number_of_attributes" value="-1"/>
<parameter key="min_number_of_attributes" value="1"/>
<parameter key="limit_max_number" value="false"/>
<parameter key="max_number_of_attributes" value="-1"/>
<process expanded="true">
<operator activated="true" class="concurrency:cross_validation" compatibility="9.5.001" expanded="true" height="145" name="Cross Validation" width="90" x="112" y="85">
<parameter key="split_on_batch_attribute" value="false"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_folds" value="5"/>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.5.001" expanded="true" height="103" name="Decision Tree" width="90" x="112" y="34">
<parameter key="criterion" value="gain_ratio"/>
<parameter key="maximal_depth" value="10"/>
<parameter key="apply_pruning" value="true"/>
<parameter key="confidence" value="0.1"/>
<parameter key="apply_prepruning" value="true"/>
<parameter key="minimal_gain" value="0.01"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
</operator>
<connect from_port="training set" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="9.5.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="9.5.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
<parameter key="main_criterion" value="first"/>
<parameter key="accuracy" value="true"/>
<parameter key="classification_error" value="false"/>
<parameter key="kappa" value="true"/>
<parameter key="weighted_mean_recall" value="false"/>
<parameter key="weighted_mean_precision" value="false"/>
<parameter key="spearman_rho" value="false"/>
<parameter key="kendall_tau" value="false"/>
<parameter key="absolute_error" value="false"/>
<parameter key="relative_error" value="false"/>
<parameter key="relative_error_lenient" value="false"/>
<parameter key="relative_error_strict" value="false"/>
<parameter key="normalized_absolute_error" value="false"/>
<parameter key="root_mean_squared_error" value="false"/>
<parameter key="root_relative_squared_error" value="false"/>
<parameter key="squared_error" value="false"/>
<parameter key="correlation" value="false"/>
<parameter key="squared_correlation" value="false"/>
<parameter key="cross-entropy" value="false"/>
<parameter key="margin" value="false"/>
<parameter key="soft_margin_loss" value="false"/>
<parameter key="logistic_loss" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="log" compatibility="9.5.001" expanded="true" height="82" name="Log" origin="GENERATED_TUTORIAL" width="90" x="447" y="85">
<list key="log">
<parameter key="Attributes" value="operator.Loop Subsets.value.feature_names"/>
<parameter key="Performance_Accuracy" value="operator.Cross Validation.value.performance 1"/>
<parameter key="Performance_Kappa" value="operator.Cross Validation.value.performance 2"/>
</list>
<parameter key="sorting_type" value="none"/>
<parameter key="sorting_k" value="100"/>
<parameter key="persistent" value="false"/>
</operator>
<connect from_port="example set" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Cross Validation" from_port="performance 1" to_op="Log" to_port="through 1"/>
<portSpacing port="source_example set" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve Titanic Training" from_port="output" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Loop Subsets" to_port="example set"/>
<connect from_op="Loop Subsets" from_port="example set" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="90"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>Hope this helpsRegards,
Varun
https://www.varunmandalapu.com/Be Safe. Follow precautions and Maintain Social Distancing
7
Answers
I don't know how to create the "5 factorial" combinaisons of sets possible automatically. But to combine 5 featureSets , have you tried to use the Apply Feature Set operator .. ??
Regards,
Lionel
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
120 combinations will have repeats like column A, Column B in one set and Column B, Column A in another (order changes).
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing
Did you try "Loop Attribute Subsets". This is doing what you are asking I guess
Varun
https://www.varunmandalapu.com/
Be Safe. Follow precautions and Maintain Social Distancing