The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
How one would go about writing Performance Results to an Excel File?
I have means of writing ExampleSets to excel, but there is no PerformanceVector To ExampleSet operator. How can I accomplish this?
Tagged:
0
Best Answer
-
scharpenberg Member Posts: 1 Learner IIIHi pblack476,I would like to add to David_A's solution that you can also directly get an exampleset via the Performance to Data operator.
However there are no options and you will always simply get all selected criteria with their values, standard deviations and variances.9
Answers
David
<
context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.4.000"
expanded="true" name="Process" origin="GENERATED_TUTORIAL">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.5.001"
expanded="true" height="68" name="Weighting" origin="GENERATED_TUTORIAL"
width="90" x="112" y="34">
<parameter key="repository_entry" value="//Samples/data/Weighting"/>
</operator>
<operator activated="true" class="concurrency:loop_parameters"
compatibility="8.2.000" expanded="true" height="82" name="Loop
Parameters" origin="GENERATED_TUTORIAL" width="90" x="380" y="34">
<list key="parameters">
<parameter key="SVM.C" value="[0.001;100000;25;logarithmic]"/>
</list>
<parameter key="error_handling" value="fail on error"/>
<parameter key="log_performance" value="true"/>
<parameter key="log_all_criteria" value="false"/>
<parameter key="synchronize" value="false"/>
<parameter key="enable_parallel_execution" value="true"/>
<process expanded="true">
<operator activated="true" class="split_data"
compatibility="9.5.001" expanded="true" height="103" name="Split Data"
origin="GENERATED_TUTORIAL" width="90" x="45" y="120">
<enumeration key="partitions">
<parameter key="ratio" value="0.5"/>
<parameter key="ratio" value="0.5"/>
</enumeration>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="support_vector_machine_libsvm"
compatibility="9.5.001" expanded="true" height="82" name="SVM"
origin="GENERATED_TUTORIAL" width="90" x="179" y="300">
<parameter key="svm_type" value="C-SVC"/>
<parameter key="kernel_type" value="rbf"/>
<parameter key="degree" value="3"/>
<parameter key="gamma" value="0.0"/>
<parameter key="coef0" value="0.0"/>
<parameter key="C" value="100000.0"/>
<parameter key="nu" value="0.5"/>
<parameter key="cache_size" value="80"/>
<parameter key="epsilon" value="0.001"/>
<parameter key="p" value="0.1"/>
<list key="class_weights"/>
<parameter key="shrinking" value="true"/>
<parameter key="calculate_confidences" value="false"/>
<parameter key="confidence_for_multiclass" value="true"/>
</operator>
<operator activated="true" class="multiply" compatibility="9.5.001"
expanded="true" height="103" name="Multiply" origin="GENERATED_TUTORIAL"
width="90" x="313" y="210"/>
<operator
activated="true" class="apply_model" compatibility="9.5.001"
expanded="true" height="82" name="Apply Model (2)"
origin="GENERATED_TUTORIAL" width="90" x="514" y="75">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="apply_model"
compatibility="9.5.001" expanded="true" height="82" name="Apply Model"
origin="GENERATED_TUTORIAL" width="90" x="514" y="300">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance_classification"
compatibility="9.5.001" expanded="true" height="82" name="Performance"
origin="GENERATED_TUTORIAL" width="90" x="648" y="300">
<parameter key="main_criterion" value="first"/>
<parameter key="accuracy" value="false"/>
<parameter key="classification_error" value="true"/>
<parameter key="kappa" value="false"/>
<parameter key="weighted_mean_recall" value="false"/>
<parameter key="weighted_mean_precision" value="false"/>
<parameter key="spearman_rho" value="false"/>
<parameter key="kendall_tau" value="false"/>
<parameter key="absolute_error" value="false"/>
<parameter key="relative_error" value="false"/>
<parameter key="relative_error_lenient" value="false"/>
<parameter key="relative_error_strict" value="false"/>
<parameter key="normalized_absolute_error" value="false"/>
<parameter key="root_mean_squared_error" value="false"/>
<parameter key="root_relative_squared_error" value="false"/>
<parameter key="squared_error" value="false"/>
<parameter key="correlation" value="false"/>
<parameter key="squared_correlation" value="false"/>
<parameter key="cross-entropy" value="false"/>
<parameter key="margin" value="false"/>
<parameter key="soft_margin_loss" value="false"/>
<parameter key="logistic_loss" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
<list key="class_weights"/>
</operator>
<operator activated="true" class="performance_classification"
compatibility="9.5.001" expanded="true" height="82" name="Performance
(2)" origin="GENERATED_TUTORIAL" width="90" x="648" y="75">
<parameter key="main_criterion" value="first"/>
<parameter key="accuracy" value="false"/>
<parameter key="classification_error" value="true"/>
<parameter key="kappa" value="false"/>
<parameter key="weighted_mean_recall" value="false"/>
<parameter key="weighted_mean_precision" value="false"/>
<parameter key="spearman_rho" value="false"/>
<parameter key="kendall_tau" value="false"/>
<parameter key="absolute_error" value="false"/>
<parameter key="relative_error" value="false"/>
<parameter key="relative_error_lenient" value="false"/>
<parameter key="relative_error_strict" value="false"/>
<parameter key="normalized_absolute_error" value="false"/>
<parameter key="root_mean_squared_error" value="false"/>
<parameter key="root_relative_squared_error" value="false"/>
<parameter key="squared_error" value="false"/>
<parameter key="correlation" value="false"/>
<parameter key="squared_correlation" value="false"/>
<parameter key="cross-entropy" value="false"/>
<parameter key="margin" value="false"/>
<parameter key="soft_margin_loss" value="false"/>
<parameter key="logistic_loss" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
<list key="class_weights"/>
</operator>
<operator activated="true" class="log" compatibility="9.5.001"
expanded="true" height="82" name="Log" origin="GENERATED_TUTORIAL"
width="90" x="782" y="75">
<list key="log">
<parameter key="Count" value="operator.Loop Parameters.value.iteration_number"/>
<parameter key="Training Error" value="operator.Performance.value.classification_error"/>
<parameter key="Testing Error" value="operator.Performance (2).value.classification_error"/>
<parameter key="SVM C" value="operator.SVM.parameter.C"/>
</list>
<parameter key="sorting_type" value="none"/>
<parameter key="sorting_k" value="100"/>
<parameter key="persistent" value="false"/>
</operator>
<connect from_port="input 1" to_op="Split Data" to_port="example set"/>
<connect from_op="Split Data" from_port="partition 1" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Split Data" from_port="partition 2" to_op="SVM" to_port="training set"/>
<connect from_op="SVM" from_port="model" to_op="Multiply" to_port="input"/>
<connect from_op="SVM" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Multiply" from_port="output 1" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Multiply" from_port="output 2" to_op="Apply Model" to_port="model"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_op="Log" to_port="through 1"/>
<portSpacing port="source_input 1" spacing="90"/>
<portSpacing port="source_input 2" spacing="90"/>
<portSpacing port="sink_performance" spacing="90"/>
<portSpacing port="sink_output 1" spacing="0"/>
<portSpacing port="sink_output 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="log_to_data"
compatibility="9.5.001" expanded="true" height="103" name="Log to Data"
width="90" x="648" y="34">
<parameter key="log_name" value="Log"/>
<description align="center" color="transparent" colored="false"
width="126">The &quot;Log Name&quot; parameter is the
exact name of the log operator you want to extract</description>
</operator>
<connect from_op="Weighting" from_port="output" to_op="Loop Parameters" to_port="input 1"/>
<connect from_op="Loop Parameters" from_port="output 1" to_op="Log to Data" to_port="through 1"/>
<connect from_op="Log to Data" from_port="exampleSet" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>