The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

Create a line in the graph

alois_borgognonalois_borgognon Member Posts: 15 Contributor II
Hello,

I made a prediction price model and I would like to, in my graph in visualizations part of an exampleset generate , create a line when the price prediction is equal to the real price or, in a nutshell when x = y.

How can we do that ?

Thanks a lot for your answer

Best Answer

Answers

  • yyhuangyyhuang Administrator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 364 RM Data Scientist

    Do you mean the linear interpolation between the label and prediction?

    <?xml version="1.0" encoding="UTF-8"?><process version="9.5.001"><br>  <context><br>    <input/><br>    <output/><br>    <macros/><br>  </context><br>  <operator activated="true" class="process" compatibility="9.5.001" expanded="true" name="Process"><br>    <parameter key="logverbosity" value="init"/><br>    <parameter key="random_seed" value="2001"/><br>    <parameter key="send_mail" value="never"/><br>    <parameter key="notification_email" value="yhuang@rapidminer.com"/><br>    <parameter key="process_duration_for_mail" value="1"/><br>    <parameter key="encoding" value="SYSTEM"/><br>    <process expanded="true"><br>      <operator activated="true" class="retrieve" compatibility="9.5.001" expanded="true" height="68" name="Retrieve Polynomial" width="90" x="112" y="85"><br>        <parameter key="repository_entry" value="//Samples/data/Polynomial"/><br>      </operator><br>      <operator activated="true" class="h2o:generalized_linear_model" compatibility="9.3.001" expanded="true" height="124" name="Generalized Linear Model" width="90" x="246" y="85"><br>        <parameter key="family" value="AUTO"/><br>        <parameter key="link" value="family_default"/><br>        <parameter key="solver" value="AUTO"/><br>        <parameter key="reproducible" value="false"/><br>        <parameter key="maximum_number_of_threads" value="4"/><br>        <parameter key="use_regularization" value="false"/><br>        <parameter key="lambda_search" value="false"/><br>        <parameter key="number_of_lambdas" value="0"/><br>        <parameter key="lambda_min_ratio" value="0.0"/><br>        <parameter key="early_stopping" value="true"/><br>        <parameter key="stopping_rounds" value="3"/><br>        <parameter key="stopping_tolerance" value="0.001"/><br>        <parameter key="standardize" value="true"/><br>        <parameter key="non-negative_coefficients" value="false"/><br>        <parameter key="add_intercept" value="true"/><br>        <parameter key="compute_p-values" value="false"/><br>        <parameter key="remove_collinear_columns" value="false"/><br>        <parameter key="missing_values_handling" value="MeanImputation"/><br>        <parameter key="max_iterations" value="0"/><br>        <parameter key="specify_beta_constraints" value="false"/><br>        <list key="beta_constraints"/><br>        <parameter key="max_runtime_seconds" value="0"/><br>        <list key="expert_parameters"/><br>      </operator><br>      <operator activated="true" class="apply_model" compatibility="9.5.001" expanded="true" height="82" name="Apply Model" width="90" x="380" y="85"><br>        <list key="application_parameters"/><br>        <parameter key="create_view" value="false"/><br>      </operator><br>      <connect from_op="Retrieve Polynomial" from_port="output" to_op="Generalized Linear Model" to_port="training set"/><br>      <connect from_op="Generalized Linear Model" from_port="model" to_op="Apply Model" to_port="model"/><br>      <connect from_op="Generalized Linear Model" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/><br>      <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/><br>      <portSpacing port="source_input 1" spacing="0"/><br>      <portSpacing port="sink_result 1" spacing="0"/><br>      <portSpacing port="sink_result 2" spacing="0"/><br>    </process><br>  </operator><br></process><br><br>


Sign In or Register to comment.