The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

How to fix this Problem ?

MunchCrunch19MunchCrunch19 Member Posts: 23 Learner III
I am trying to apply deep learning MODEL to my data but facing the below problem, The process and Problem snapshot are below. Please guide me in this regard.

<context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.5.001" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="9.5.001" expanded="true" height="68" name="Retrieve Retroreflectivity_data" width="90" x="45" y="136">
        <parameter key="repository_entry" value="//Temporary Repository/Retroreflectivity_data"/>
      </operator>
      <operator activated="true" class="select_attributes" compatibility="9.5.001" expanded="true" height="82" name="Select Attributes" width="90" x="179" y="136">
        <parameter key="attribute_filter_type" value="subset"/>
        <parameter key="attribute" value=""/>
        <parameter key="attributes" value="Brand|Color|Age (years)|Installation Year|Observation Angle (Degrees)|Orientation (Degrees)|RA-values(Cd/lx/m2)|Sheeting Type"/>
        <parameter key="use_except_expression" value="false"/>
        <parameter key="value_type" value="attribute_value"/>
        <parameter key="use_value_type_exception" value="false"/>
        <parameter key="except_value_type" value="time"/>
        <parameter key="block_type" value="attribute_block"/>
        <parameter key="use_block_type_exception" value="false"/>
        <parameter key="except_block_type" value="value_matrix_row_start"/>
        <parameter key="invert_selection" value="false"/>
        <parameter key="include_special_attributes" value="false"/>
      </operator>
      <operator activated="true" class="set_role" compatibility="9.5.001" expanded="true" height="82" name="Set Role" width="90" x="313" y="136">
        <parameter key="attribute_name" value="RA-values(Cd/lx/m2)"/>
        <parameter key="target_role" value="label"/>
        <list key="set_additional_roles"/>
      </operator>
      <operator activated="true" class="nominal_to_numerical" compatibility="9.5.001" expanded="true" height="103" name="Nominal to Numerical" width="90" x="447" y="136">
        <parameter key="return_preprocessing_model" value="false"/>
        <parameter key="create_view" value="false"/>
        <parameter key="attribute_filter_type" value="subset"/>
        <parameter key="attribute" value=""/>
        <parameter key="attributes" value="Sheeting Type|Color|Brand"/>
        <parameter key="use_except_expression" value="false"/>
        <parameter key="value_type" value="nominal"/>
        <parameter key="use_value_type_exception" value="false"/>
        <parameter key="except_value_type" value="file_path"/>
        <parameter key="block_type" value="single_value"/>
        <parameter key="use_block_type_exception" value="false"/>
        <parameter key="except_block_type" value="single_value"/>
        <parameter key="invert_selection" value="false"/>
        <parameter key="include_special_attributes" value="false"/>
        <parameter key="coding_type" value="dummy coding"/>
        <parameter key="use_comparison_groups" value="false"/>
        <list key="comparison_groups"/>
        <parameter key="unexpected_value_handling" value="all 0 and warning"/>
        <parameter key="use_underscore_in_name" value="false"/>
      </operator>
      <operator activated="true" class="concurrency:cross_validation" compatibility="9.5.001" expanded="true" height="145" name="Cross Validation" width="90" x="581" y="136">
        <parameter key="split_on_batch_attribute" value="false"/>
        <parameter key="leave_one_out" value="false"/>
        <parameter key="number_of_folds" value="10"/>
        <parameter key="sampling_type" value="shuffled sampling"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
        <parameter key="enable_parallel_execution" value="true"/>
        <process expanded="true">
          <operator activated="true" class="deeplearning:dl4j_sequential_neural_network" compatibility="0.9.001" expanded="true" height="103" name="Deep Learning" width="90" x="179" y="34">
            <parameter key="loss_function" value="Mean Squared Error (Linear Regression)"/>
            <parameter key="epochs" value="100"/>
            <parameter key="use_miniBatch" value="false"/>
            <parameter key="batch_size" value="32"/>
            <parameter key="updater" value="Adam"/>
            <parameter key="learning_rate" value="0.01"/>
            <parameter key="momentum" value="0.9"/>
            <parameter key="rho" value="0.95"/>
            <parameter key="epsilon" value="1.0E-6"/>
            <parameter key="beta1" value="0.9"/>
            <parameter key="beta2" value="0.999"/>
            <parameter key="RMSdecay" value="0.95"/>
            <parameter key="weight_initialization" value="Normal"/>
            <parameter key="bias_initialization" value="0.0"/>
            <parameter key="use_regularization" value="false"/>
            <parameter key="l1_strength" value="0.1"/>
            <parameter key="l2_strength" value="0.1"/>
            <parameter key="optimization_method" value="Stochastic Gradient Descent"/>
            <parameter key="backpropagation" value="Standard"/>
            <parameter key="backpropagation_length" value="50"/>
            <parameter key="infer_input_shape" value="true"/>
            <parameter key="network_type" value="Simple Neural Network"/>
            <parameter key="log_each_epoch" value="true"/>
            <parameter key="epochs_per_log" value="10"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <process expanded="true">
              <operator activated="true" class="deeplearning:dl4j_lstm_layer" compatibility="0.9.001" expanded="true" height="68" name="Add LSTM Layer" width="90" x="246" y="34">
                <parameter key="neurons" value="50"/>
                <parameter key="gate_activation" value="Softmax"/>
                <parameter key="forget_gate_bias_initialization" value="1.0"/>
              </operator>
              <operator activated="true" class="deeplearning:dl4j_dense_layer" compatibility="0.9.001" expanded="true" height="68" name="Add Fully-Connected Layer" width="90" x="514" y="34">
                <parameter key="number_of_neurons" value="100"/>
                <parameter key="activation_function" value="ReLU (Rectified Linear Unit)"/>
                <parameter key="use_dropout" value="false"/>
                <parameter key="dropout_rate" value="0.25"/>
                <parameter key="overwrite_networks_weight_initialization" value="false"/>
                <parameter key="weight_initialization" value="Normal"/>
                <parameter key="overwrite_networks_bias_initialization" value="false"/>
                <parameter key="bias_initialization" value="0.0"/>
              </operator>
              <connect from_port="layerArchitecture" to_op="Add LSTM Layer" to_port="layerArchitecture"/>
              <connect from_op="Add LSTM Layer" from_port="layerArchitecture" to_op="Add Fully-Connected Layer" to_port="layerArchitecture"/>
              <connect from_op="Add Fully-Connected Layer" from_port="layerArchitecture" to_port="layerArchitecture"/>
              <portSpacing port="source_layerArchitecture" spacing="0"/>
              <portSpacing port="sink_layerArchitecture" spacing="0"/>
            </process>
          </operator>
          <connect from_port="training set" to_op="Deep Learning" to_port="training set"/>
          <connect from_op="Deep Learning" from_port="model" to_port="model"/>
          <portSpacing port="source_training set" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="9.5.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="performance_regression" compatibility="9.5.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
            <parameter key="main_criterion" value="first"/>
            <parameter key="root_mean_squared_error" value="true"/>
            <parameter key="absolute_error" value="false"/>
            <parameter key="relative_error" value="false"/>
            <parameter key="relative_error_lenient" value="false"/>
            <parameter key="relative_error_strict" value="false"/>
            <parameter key="normalized_absolute_error" value="false"/>
            <parameter key="root_relative_squared_error" value="false"/>
            <parameter key="squared_error" value="true"/>
            <parameter key="correlation" value="true"/>
            <parameter key="squared_correlation" value="true"/>
            <parameter key="prediction_average" value="true"/>
            <parameter key="spearman_rho" value="false"/>
            <parameter key="kendall_tau" value="false"/>
            <parameter key="skip_undefined_labels" value="true"/>
            <parameter key="use_example_weights" value="true"/>
          </operator>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_test set results" spacing="0"/>
          <portSpacing port="sink_performance 1" spacing="0"/>
          <portSpacing port="sink_performance 2" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Retrieve Retroreflectivity_data" from_port="output" to_op="Select Attributes" to_port="example set input"/>
      <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
      <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
      <connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
      <connect from_op="Cross Validation" from_port="example set" to_port="result 2"/>
      <connect from_op="Cross Validation" from_port="test result set" to_port="result 3"/>
      <connect from_op="Cross Validation" from_port="performance 1" to_port="result 4"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
      <portSpacing port="sink_result 4" spacing="0"/>
      <portSpacing port="sink_result 5" spacing="0"/>
    </process>
  </operator>
</process>



Answers

  • sgenzersgenzer Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, Community Manager, Member, University Professor, PM Moderator Posts: 2,959 Community Manager
    hi @MunchCrunch19 that's a known error. The Deep Learning extension is still in beta. I believe a final release version will be coming out soon. @pschlunder may have more info on this.

    Scott
  • pschlunderpschlunder Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, RMResearcher, Member Posts: 96 RM Research
    it looks like your network configuration is missing a layer. Please try it with an added "Fully-connected layer" as the last layer, that contains 1 neuron (since it seems you're doing a prediction of one attribute) and as an activation function you can choose for example "none (identity)".

    Hope this helps,
    Philipp
Sign In or Register to comment.