The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

How to use Polynomial Regression in rapidminer correctly

rookierookie Member Posts: 3 Learner I
edited March 2020 in Help

          Hello, everyone. This is my first forum post asking questions about polynomial regression in rapidminer.

The original data is:x:4194.06 3466.45  2070.08   874.98  corresponding to   y:91540.07  109460.36  120338.64  102182.19

As shown in the first flow, the first result expression is obtained by using the polynomial regression operator.

<?xml version="1.0" encoding="UTF-8"?><process version="9.6.000">

  <context>

    <input/>

    <output/>

    <macros/>

  </context>

  <operator activated="true" class="process" compatibility="9.6.000" expanded="true" name="Process">

    <parameter key="logverbosity" value="init"/>

    <parameter key="random_seed" value="2001"/>

    <parameter key="send_mail" value="never"/>

    <parameter key="notification_email" value=""/>

    <parameter key="process_duration_for_mail" value="30"/>

    <parameter key="encoding" value="SYSTEM"/>

    <process expanded="true">

      <operator activated="true" class="read_excel" compatibility="9.6.000" expanded="true" height="68" name="Read Excel" width="90" x="45" y="85">

        <parameter key="excel_file" value="C:\Users\1\Desktop\question data.xlsx"/>

        <parameter key="sheet_selection" value="sheet number"/>

        <parameter key="sheet_number" value="1"/>

        <parameter key="imported_cell_range" value="A1"/>

        <parameter key="encoding" value="SYSTEM"/>

        <parameter key="first_row_as_names" value="true"/>

        <list key="annotations"/>

        <parameter key="date_format" value=""/>

        <parameter key="time_zone" value="SYSTEM"/>

        <parameter key="locale" value="English (United States)"/>

        <parameter key="read_all_values_as_polynominal" value="false"/>

        <list key="data_set_meta_data_information">

          <parameter key="0" value="x.true.real.attribute"/>

          <parameter key="1" value="y.true.real.attribute"/>

        </list>

        <parameter key="read_not_matching_values_as_missings" value="false"/>

        <parameter key="datamanagement" value="double_array"/>

        <parameter key="data_management" value="auto"/>

      </operator>

      <operator activated="true" class="set_role" compatibility="9.6.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="85">

        <parameter key="attribute_name" value="y"/>

        <parameter key="target_role" value="label"/>

        <list key="set_additional_roles">

          <parameter key="x" value="regular"/>

        </list>

      </operator>

      <operator activated="true" class="polynomial_regression" compatibility="9.6.000" expanded="true" height="82" name="Polynomial Regression" width="90" x="313" y="85">

        <parameter key="max_iterations" value="5000"/>

        <parameter key="replication_factor" value="2"/>

        <parameter key="max_degree" value="2"/>

        <parameter key="min_coefficient" value="-100.0"/>

        <parameter key="max_coefficient" value="100.0"/>

        <parameter key="use_local_random_seed" value="false"/>

        <parameter key="local_random_seed" value="1992"/>

      </operator>

      <connect from_op="Read Excel" from_port="output" to_op="Set Role" to_port="example set input"/>

      <connect from_op="Set Role" from_port="example set output" to_op="Polynomial Regression" to_port="training set"/>

      <connect from_op="Polynomial Regression" from_port="model" to_port="result 1"/>

      <portSpacing port="source_input 1" spacing="0"/>

      <portSpacing port="sink_result 1" spacing="0"/>

      <portSpacing port="sink_result 2" spacing="0"/>

    </process>

  </operator>

</process>


      The second flow, based on the original data, creates a new list of attributes as x^2=z, and uses the linear regression operator to make the second result expression.

<?xml version="1.0" encoding="UTF-8"?><process version="9.6.000">

  <context>

    <input/>

    <output/>

    <macros/>

  </context>

  <operator activated="true" class="process" compatibility="9.6.000" expanded="true" name="Process">

    <parameter key="logverbosity" value="init"/>

    <parameter key="random_seed" value="2001"/>

    <parameter key="send_mail" value="never"/>

    <parameter key="notification_email" value=""/>

    <parameter key="process_duration_for_mail" value="30"/>

    <parameter key="encoding" value="SYSTEM"/>

    <process expanded="true">

      <operator activated="true" class="read_excel" compatibility="9.6.000" expanded="true" height="68" name="Read Excel" width="90" x="45" y="85">

        <parameter key="excel_file" value="C:\Users\1\Desktop\question data.xlsx"/>

        <parameter key="sheet_selection" value="sheet number"/>

        <parameter key="sheet_number" value="1"/>

        <parameter key="imported_cell_range" value="A1"/>

        <parameter key="encoding" value="SYSTEM"/>

        <parameter key="first_row_as_names" value="true"/>

        <list key="annotations"/>

        <parameter key="date_format" value=""/>

        <parameter key="time_zone" value="SYSTEM"/>

        <parameter key="locale" value="English (United States)"/>

        <parameter key="read_all_values_as_polynominal" value="false"/>

        <list key="data_set_meta_data_information">

          <parameter key="0" value="x.true.real.attribute"/>

          <parameter key="1" value="y.true.real.attribute"/>

        </list>

        <parameter key="read_not_matching_values_as_missings" value="false"/>

        <parameter key="datamanagement" value="double_array"/>

        <parameter key="data_management" value="auto"/>

      </operator>

      <operator activated="true" class="generate_attributes" compatibility="9.6.000" expanded="true" height="82" name="Generate Attributes" width="90" x="179" y="85">

        <list key="function_descriptions">

          <parameter key="z" value="x*x"/>

        </list>

        <parameter key="keep_all" value="true"/>

      </operator>

      <operator activated="false" class="rename" compatibility="9.6.000" expanded="true" height="82" name="Rename" width="90" x="246" y="238">

        <parameter key="old_name" value="x"/>

        <parameter key="new_name" value="x^2"/>

        <list key="rename_additional_attributes"/>

      </operator>

      <operator activated="true" class="set_role" compatibility="9.6.000" expanded="true" height="82" name="Set Role" width="90" x="313" y="85">

        <parameter key="attribute_name" value="y"/>

        <parameter key="target_role" value="label"/>

        <list key="set_additional_roles">

          <parameter key="x" value="regular"/>

        </list>

      </operator>

      <operator activated="true" class="linear_regression" compatibility="9.6.000" expanded="true" height="103" name="Linear Regression" width="90" x="514" y="85">

        <parameter key="feature_selection" value="none"/>

        <parameter key="alpha" value="0.05"/>

        <parameter key="max_iterations" value="10"/>

        <parameter key="forward_alpha" value="0.05"/>

        <parameter key="backward_alpha" value="0.05"/>

        <parameter key="eliminate_colinear_features" value="false"/>

        <parameter key="min_tolerance" value="0.05"/>

        <parameter key="use_bias" value="true"/>

        <parameter key="ridge" value="1.0E-8"/>

      </operator>

      <operator activated="false" class="polynomial_regression" compatibility="9.6.000" expanded="true" height="82" name="Polynomial Regression" width="90" x="581" y="238">

        <parameter key="max_iterations" value="5000"/>

        <parameter key="replication_factor" value="2"/>

        <parameter key="max_degree" value="2"/>

        <parameter key="min_coefficient" value="-100.0"/>

        <parameter key="max_coefficient" value="100.0"/>

        <parameter key="use_local_random_seed" value="false"/>

        <parameter key="local_random_seed" value="1992"/>

      </operator>

      <connect from_op="Read Excel" from_port="output" to_op="Generate Attributes" to_port="example set input"/>

      <connect from_op="Generate Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>

      <connect from_op="Set Role" from_port="example set output" to_op="Linear Regression" to_port="training set"/>

      <connect from_op="Linear Regression" from_port="model" to_port="result 1"/>

      <portSpacing port="source_input 1" spacing="0"/>

      <portSpacing port="sink_result 1" spacing="0"/>

      <portSpacing port="sink_result 2" spacing="0"/>

    </process>

  </operator>

</process>

     I want to ask why the results of the two processes are not the same, the original data presents a quadratic nonlinear relationship, and why the quadratic expression cannot be made by polynomial regression. 

Thanks you very much!


Tagged:

Answers

  • rookierookie Member Posts: 3 Learner I
            First of all, thank you for your answer <3 . According to your description, I am as the data is too little, and not standardized, to lead to the results out? But these four samples are real data , need the four data to construct a yuan quadratic polynomial, Because nonlinear equations can be converted to linear equations , so I use z instead of x2, I have the linear regression equation. But why do with polynomial regression is not to come out, how do you explain that please?Polynomial regression is there any limit to this operator ?
  • rookierookie Member Posts: 3 Learner I
    hi @yyhuang
           Sorry in advance, I don't know how to use the function of this forum.That's why it took so long to reply
             First of all, thank you for your answer 3 . According to your description, I am as the data is too little, and not standardized, to lead to the results out? But these four samples are real data , need the four data to construct a yuan quadratic polynomial, Because nonlinear equations can be converted to linear equations , so I use z instead of x2, I have the linear regression equation. But why do with polynomial regression is not to come out, how do you explain that please?Polynomial regression is there any limit to this operator ?
Sign In or Register to comment.