The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Performance evaluation
Ali_Danandeh
Member Posts: 1 Learner I
Dear All,
I built a Decision Tree with Rapidmainer with 70% training and 30% validation data. I would like to see the confusion matrix for the training and validation sets, separately. Could you please let me know how I call this results in Rapidminer?
I built a Decision Tree with Rapidmainer with 70% training and 30% validation data. I would like to see the confusion matrix for the training and validation sets, separately. Could you please let me know how I call this results in Rapidminer?
Tagged:
1
Best Answer
-
hbajpai Member Posts: 102 UnicornHey @Ali_Danandeh,
You can try out the following process. If you are not aware how use XML code, check out https://community.rapidminer.com/discussion/57109/where-to-write-the-solution-code.<?xml version="1.0" encoding="UTF-8"?><process version="9.6.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.6.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.6.000" expanded="true" height="68" name="Retrieve Sonar" width="90" x="179" y="34"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="split_data" compatibility="9.6.000" expanded="true" height="103" name="Split Data" width="90" x="313" y="34"> <enumeration key="partitions"> <parameter key="ratio" value="0.7"/> <parameter key="ratio" value="0.3"/> </enumeration> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="concurrency:cross_validation" compatibility="9.6.000" expanded="true" height="145" name="Training Cross Validation" width="90" x="581" y="34"> <parameter key="split_on_batch_attribute" value="false"/> <parameter key="leave_one_out" value="false"/> <parameter key="number_of_folds" value="10"/> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.6.000" expanded="true" height="103" name="Decision Tree" width="90" x="246" y="34"> <parameter key="criterion" value="gain_ratio"/> <parameter key="maximal_depth" value="10"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.1"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <connect from_port="training set" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.6.000" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.6.000" expanded="true" height="82" name="Training" width="90" x="246" y="34"> <parameter key="main_criterion" value="first"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="false"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="false"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="false"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Training" to_port="labelled data"/> <connect from_op="Training" from_port="performance" to_port="performance 1"/> <connect from_op="Training" from_port="example set" to_port="test set results"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_test set results" spacing="0"/> <portSpacing port="sink_performance 1" spacing="0"/> <portSpacing port="sink_performance 2" spacing="0"/> </process> </operator> <operator activated="true" class="apply_model" compatibility="9.6.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="715" y="187"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.6.000" expanded="true" height="82" name="Validation" width="90" x="849" y="187"> <parameter key="main_criterion" value="first"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="false"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="false"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="false"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Retrieve Sonar" from_port="output" to_op="Split Data" to_port="example set"/> <connect from_op="Split Data" from_port="partition 1" to_op="Training Cross Validation" to_port="example set"/> <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Training Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Training Cross Validation" from_port="performance 1" to_port="result 2"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Validation" to_port="labelled data"/> <connect from_op="Validation" from_port="performance" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator> </process> <b></b>
Best,
Harshit8