The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Cannot change k-value for the sample kmean with plot.
hello community. I need to do k-means cluster using rapidminer and produce elbow method graph. i've tested the k-means clustering with plot sample. However, when I try to change the k value from 13 to 5 for the k-means operator and run, the k value does not change instead it turn back to 13 and produce 13 cluster. Can someone tell me what is the problem and solution?
Thank you in advance.
Tagged:
0
Best Answer
-
MartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data ScientistHi,this is exactly what i said. You use Loop Parameters to override the k of kmeans. Please change the parameters of Loop Parameters.Best,Martin- Sr. Director Data Solutions, Altair RapidMiner -
Dortmund, Germany5
Answers
Dortmund, Germany
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.7.002" expanded="true" name="Root" origin="GENERATED_SAMPLE">
<parameter key="logverbosity" value="warning"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.7.002" expanded="true" height="68" name="Retrieve" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
<parameter key="repository_entry" value="../../data/Iris"/>
</operator>
<operator activated="true" class="loop_parameters" compatibility="9.7.002" expanded="true" height="82" name="ParameterIteration" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
<list key="parameters">
<parameter key="KMeans.k" value="2,3,4,5,6,7,8,9,10,11,13"/>
</list>
<parameter key="error_handling" value="fail on error"/>
<parameter key="synchronize" value="false"/>
<process expanded="true">
<operator activated="true" class="concurrency:k_means" compatibility="9.7.002" expanded="true" height="82" name="KMeans" origin="GENERATED_SAMPLE" width="90" x="45" y="34">
<parameter key="add_cluster_attribute" value="true"/>
<parameter key="add_as_label" value="false"/>
<parameter key="remove_unlabeled" value="false"/>
<parameter key="k" value="13"/>
<parameter key="max_runs" value="10"/>
<parameter key="determine_good_start_values" value="false"/>
<parameter key="measure_types" value="BregmanDivergences"/>
<parameter key="mixed_measure" value="MixedEuclideanDistance"/>
<parameter key="nominal_measure" value="NominalDistance"/>
<parameter key="numerical_measure" value="EuclideanDistance"/>
<parameter key="divergence" value="SquaredEuclideanDistance"/>
<parameter key="kernel_type" value="radial"/>
<parameter key="kernel_gamma" value="1.0"/>
<parameter key="kernel_sigma1" value="1.0"/>
<parameter key="kernel_sigma2" value="0.0"/>
<parameter key="kernel_sigma3" value="2.0"/>
<parameter key="kernel_degree" value="3.0"/>
<parameter key="kernel_shift" value="1.0"/>
<parameter key="kernel_a" value="1.0"/>
<parameter key="kernel_b" value="0.0"/>
<parameter key="max_optimization_steps" value="100"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="cluster_distance_performance" compatibility="9.7.002" expanded="true" height="103" name="Evaluation" origin="GENERATED_SAMPLE" width="90" x="179" y="34">
<parameter key="main_criterion" value="Avg. within centroid distance"/>
<parameter key="main_criterion_only" value="false"/>
<parameter key="normalize" value="false"/>
<parameter key="maximize" value="false"/>
</operator>
<operator activated="true" class="log" compatibility="9.7.002" expanded="true" height="103" name="ProcessLog" origin="GENERATED_SAMPLE" width="90" x="313" y="34">
<list key="log">
<parameter key="k" value="operator.KMeans.parameter.k"/>
<parameter key="DB" value="operator.Evaluation.value.DaviesBouldin"/>
<parameter key="W" value="operator.Evaluation.value.avg_within_distance"/>
</list>
<parameter key="sorting_type" value="none"/>
<parameter key="sorting_k" value="100"/>
<parameter key="persistent" value="false"/>
</operator>
<connect from_port="input 1" to_op="KMeans" to_port="example set"/>
<connect from_op="KMeans" from_port="cluster model" to_op="Evaluation" to_port="cluster model"/>
<connect from_op="KMeans" from_port="clustered set" to_op="Evaluation" to_port="example set"/>
<connect from_op="Evaluation" from_port="performance" to_op="ProcessLog" to_port="through 1"/>
<connect from_op="Evaluation" from_port="example set" to_op="ProcessLog" to_port="through 2"/>
<connect from_op="ProcessLog" from_port="through 1" to_port="performance"/>
<connect from_op="ProcessLog" from_port="through 2" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="ParameterIteration" to_port="input 1"/>
<connect from_op="ParameterIteration" from_port="result 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>